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Chapter 1

Introduction

1.1 General Background
Particles with attractive interactions dispersed in a Newtonian fluid may form aggregates.
Under flow the aggregates can deform restructure, break up and merge with each other.
This class of phenomena is wide spread in practical systems and at the heart of particulate
flow which is a type of two-phase flow. The most widespread example of particulate
flow is the flow of blood in our body [1]. Particulate flow is encountered in several
industrial applications and environmental problems such as paper manufacturing, paint
manufacturing, medical applications and waste water treatment [2, 3, 4, 5]. Amongst
others it is highly relevant for food industry where a long-standing problem is the behavior
of particle gels in flow [6, 7]. The scientific understanding of these systems is emerging but
due to the complexity of the involved processes important questions remain unanswered.
The influence of the hydrodynamics can not be figured out easily in an analytical way,
since we deal with a multiple particle aggregate. Direct observations of the structural and
configurational changes of an aggregate are lacking.

1.2 Aim of the project
To produce primary knowledge of aggregate behavior one better focuses on single aggre-
gates with well defined particles and structures and good controllable experiments.
In this project we study experimentally single 2D aggregates, consisting of non-

Brownian monodisperse attractive particles, in shear flow and analyze their behavior.
The 2D plane coincides with the shear plane. The translation from 2D to 3D phenom-
ena is not simple, however they will in general show similar features. We consider the
2D study as a model system for 3D studies. The focus of the study is the role of the
hydrodynamics on the restructuring and breaking of the aggregates. We investigate the
effects coming from the size of the primary particles, interface properties, aggregate size
and initial shape.

1.2.1 Break-up criterion
Crucial assumption in the modeling of the processes is that the size of an aggregate is
determined by a balance between the hydrodynamic force on it due to the ambient flow

1
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field and its strength: a break-up criterion [8, 9, 10].

Size of the aggregate
(Break-up criterion)
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(Interaction forces)

Applied shear flow
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Figure 1.1: Schematic representation of the break-up criterion.
Figure 1.1 presents a schematic representation of the break-up criterion. The strength

of the aggregate is defined by the superposition of repulsive and attractive forces between
the primary particles. When the aggregate is subjected to a shear flow the hydrodynamic
stresses acting on its surface may cause its break-up. The hydrodynamic forces are coun-
teracted by the attractive forces between the particles. The break-up occurs when the
hydrodynamic force overcomes the attractive forces.

1.2.2 Experimental approaches
Finding a good technique for studying floc strength is difficult. The flocs can be very
different in size, shape, and they can be also very fragile. It is also difficult to compare
the results from different studies because the results depend strongly on the technique
that has been used for measuring floc strength.
Two distinctive breaking mechanisms have been identified: erosion and fragmentation

[11, 12, 13]. Erosion consists of shearing of single particles or small fragments from the
aggregate surface while rupture means breaking of the aggregate in two or more large
pieces. It is believed that different forces are responsible for the two mechanisms. The
erosion is caused by the shear force of the fluid on the surface of the aggregate. It is a
slow process and dominates at moderate stresses. Rupture occurs when the hydrodynamic
stress exceeds the cohesive force and is assumed to be caused by the pressure difference
inside the aggregate.
Most researches investigate the dependence of the floc size as a function of the applied

hydrodynamic shear flow. For a review of the experiments performed in 3D one can
refer to Jarvis and coworkers [12]. In general, it is assumed that the maximum final size
of an aggregate in a shear flow is inversely proportional to the rate of shear to some
power (break-up criterion). This criterion leads to a length scale, which determines the
maximum size of an aggregate as a function of shear flow [14]. The simplest way of
evaluating the floc strength is to measure the ratio between the floc size before and after
break-up for a given shear rate [15]. The higher the strength factor is, the stronger
the flocs are. The floc strength is connected to the floc structure, which is defined by
the number and strength of bonds between the individual particles inside the floc. It
was found that increasing the floc compactness will increase the floc strength due to the
higher number of bonds between the particles. The floc strength can be related to the
energy dissipation of the system or the velocity gradient applied to the system. This
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approach relays upon complex theories and floc break-up models. Additionally, the floc
visualization in the vessel is difficult (when using optical microscopy), expensive (when
using light scattering) and sometimes rely on invasive techniques (such as taking samples)
that can influence the results.
Recently developed techniques directly measure the force needed for a floc rupture.

Yeung and Pelton [16] use micromechanical techniques to pull apart flocs. They found
that break-up occurs at the weakest spot inside the aggregate. Thus, a compact aggregate
will break due to erosion. The aggregate strength did not depend on the aggregate size.
Another technique (micromanipulations) explored the break-up of flocs by compression
[17]. These techniques provide direct insight into aggregate breaking, however the number
of experiments and hence the received results are limited.
In 2D most of the research has been concentrated on the investigation of particle

monolayers at a liquid interface [18, 19, 20, 21]. Stancik investigated the effect of shear
[18] and elongational flow [19] on the structure of a monolayer of particles at a water/oil
interface. The lattice structure was observed to pass from a hexagonal array through
a liquid-like state, at start-up of the flow, to a semi-ordered state during steady flow.
Aveyard [20, 21] also studied monolayers of particles at an interface when compressed in
a Langmuir trough. At the water/air interface the particles were packed in a hexagonal
array while at the water/oil interface they went through a transition from a hexagonal to
a rhombohedral structure. The monolayer collapses by folding and corrugation when the
surface pressure equals the interfacial tension, but the particles did not migrate from the
interface under the compression.
Two types of 2D suspensions of colloidal particles have been studied by Hoekstra and

coworkers [22]: systems in which the particles can and can not slide along each other,
depending on the strength of the attractive interparticle potential. They found that shear
flow induces the same type of anisotropy in both systems. To probe this anisotropy the
Fourier transforms of the aggregate images were studied. In the system with a strongly
attractive potential the density inside the aggregates increases with the applied shear flow
while it decreases in system with a weak attraction between the particles. Break-up was
found to occur at the weakest link in the aggregate (at a single contact point between the
particles) and erosion was not observed.
Hansen and coworkers [23] studied 2D colloidal aggregation in a Couette cell. The

cluster size and structure was followed at different shear rates. The weakly aggregated
systems showed rearrangement into a more compact structure and a densification with
increasing shear rate while the strongly aggregated systems did not display a significant
change in structure.

1.2.3 Analytical models
Analytical models can be used to describe the aggregate break-up. These models generally
simplify the aggregate structure. The two limiting cases are a uniform impermeable [24]
or permeable [25] sphere. Bagster and Tomi [24] calculated that for a homogeneous
impermeable sphere the rupture occurs on a plane trough the center of the sphere while
the critical shear rate does not depend on its size. Adler and Mils [25] considered the
aggregate as uniform porous sphere. In that case the critical shear rate depends on the
aggregate size; it is less for smaller aggregates. However for large flocs the critical shear
rate approach to a constant value similar to the case considered by Bagster and Tomi.
The work of Sonntag and Russel [26] is a further development of the Adler-Mils theory
to non-uniform flocs. Again the considered flocs are porous and permeable to the flow.
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They assume in their model that there is no internal rearrangements and that break-up
occurs near the surface of the flocs. Their results show a dependence of the floc size on
the shear rate.
The fracture of the aggregate is assumed to occur along planar surfaces (usually passing

through the aggregate center) [24, 27] or by crack growth [28]. The several models for
break-up predict a different dependence on the volume fraction and the radius of the
primary particles.
Only a few studies dealing with erosion have been carry out [29, 30, 31]. Powell

and Mason [29] described the erosion kinetics for compact spherical aggregates without
attraction between the primary (cohesionless) particles. They found that the erosion rate
depends on the flow type and the ratio between the aggregate and primary particle size,
but it is independent of the shear rate.

1.2.4 Numerical simulations
Numerical simulations are needed for computing multiple particles hydrodynamic inter-
actions or transient behavior. The set of differential equations is too large or too many
variables are present to be solved analytically. Various numerical simulations have been
carried out. Doi and Chen [32] proposed the sticky sphere model in which the particles
are assumed to stick to each other. They can roll over each other without slipping at
their contact points. It is assumed that the hydrodynamic drag force acts on all particles
in the aggregate even when they are not directly exposed to the flow. Thus the model
is applicable to small number of particles in which the assumption is valid. Bossis and
Brady proposed the Stokesian Dynamics [33], which calculates rigorously the mutual hy-
drodynamic interactions. Although the method has been improved during the years, as
the Accelerated Stokesian Dynamics [34], it still requires long computational times which
also limits the number of particles that can be considered. Another method is the Discrete
Element Method (DEM) developed by Cundal [35] and later modified by Higashitani for
aggregates in 2D [36] and 3D [37]. The method starts by putting all particles at certain
positions with some initial velocities. At every time step the total force acting on each
particles is computed and from there the change in the position and velocity. The method
is very convenient for visualizing transient behavior. A limitation at the moment is that
there is no DEM that takes into account the exact local flow field.

1.3 Thesis outline
The thesis is organized as follows. In chapter 2 the considerations with respect to the
design and operation of the experimental setup are presented. The first part of the chapter
is devoted to the flow field while the second describes the liquid-liquid interface shape.
In chapter 3 particles at the interface, before introducing a shear flow, are treated.

The interface deformation that a single particle creates is described. Next the exact
boundary conditions for the three phase contact line on a wall, cylinder and sphere are
derived. The exact interface profile is calculated by solving the linearized Young-Laplace
equation. Then the capillary interactions between two spherical particles are considered.
The theory for capillary interactions is extended further in chapter 4 for an arbitrary

number of particles and allowing also for a background curvature of the interface. The
theoretical findings are supported by experimental results for pairs of interacting particles
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at an interface with a slight macroscopic background curvature. Particle velocities are
measured and compared with model calculations based on a force balance.
Next in chapter 5 the results for the critical shear rate for break-up of aggregates

with different sizes in a simple shear flow are presented. The evolution of the aggregate
structure before break-up is also investigated. A simple theoretical model is developed
for aggregate rupture. In the model the aggregate is considered as solid circular disk that
will break near a middle line.
In chapter 6, the investigation of the aggregates structure and breaking is continued,

with more experimental systems introduced. Special attention is paid to how and where
the aggregates rupture. The theoretical model from chapter 5 is developed further by
calculating also the critical shear for erosion and erosion kinetics. The thesis ends with
an overview and perspectives in chapter 7, followed by a short summary.
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Chapter 2

Description of the
experimental set-up and
instrumental characteristics
Abstract

In the present chapter we describe the counter rotating Couette device, used in this study.
Also the flow field in the Couette device is discussed. Not only the steady state is considered but
also the transient behavior due to changes in the cylinder speeds. From this analysis a response
time of about 45 s was obtained, indicating that position control of an object in the flow field,
using a feedback loop, is not feasable. Moreover, the shape of the undistrubed liquid-liquid
interface is described and how it is controled in the experiments. To this end a laser refraction
method is presented.

2.1 Introduction
In the present chapter the considerations with respect to the design and operation of
the experimental setup will be treated. In Figure 2.1 the experimental setup is depicted,
it basically consists of a Couette cell, containing two immiscible fluid layers with the
aggregate particles confined at their interface. The upper fluid is air or an oil, while the
lower phase is aqueous. The aggregate behavior is recorded by means of a microscope
fitted with a camera and linked to a video-recorder. In order to be able to watch the
particles at a fixed position, a stagnant line of flow has to be maintained at the interface
by means of rotating the inner- and outer Couette cylinders in opposite direction. The
radial position of the stagnant line may be controlled by appropriately adjusting the speed
of the cylinders.
The behavior of the aggregate is determined by the forces acting from the flow field

on the particles, therefore we need to know the exact shape of the flow field. In the first
part of this chapter the steady state flow field will be treated, then the transient response
of the flow field to a change in rotational speed of the cylinders will be determined. The
aim of the calculations is to provide better insight into the experiments.
The shape of the interface may add an extra force to the system due to its curva-

ture. Characterization and control of the interface shape is therefore necessary. In the
7
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Figure 2.1: Schematic of the experimental set-up.

second section the interface shape will be calculated and methods will be presented for
characterizing and controlling it.

2.2 Description of the flow field in a counter rotating
Couette device

We assume steady, laminar and isothermal flow and non slip at the cylinders walls. The
presence of the interface is omitted and the gap is filled with a Newtonian fluid. The
calculations were made considering water as the liquid phase. First the velocities and
shear distribution in the gap are given followed by expressions for the stagnant zone
position and shear rate. Then the size of the aggregate is taken into consideration and
the shear variation over the entire aggregate is discussed. Taylor number for the fluid and
the bottom effect are calculated too in order to characterize the stability of the flow.

2.2.1 Calculation of the shear rate and velocity profile in the gap
One has to consider flow of a fluid confined between the two counter rotating concentric
cylinders. The inner and the outer cylinder have radii a and b and the angular velocities
are Ωa and Ωb, respectively (as shown in Figure 2.2). In our case a = 24 mm and b = 45
mm. The annular gap between them is filled with a Newtonian fluid with viscosity η. For
the calculation cylindrical coordinates (r, φ, z) were used.
According to the Newton’s viscosity law the shear stress τ can be written as:

τ = ηγ̇ (2.1)
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Figure 2.2: Scheme of the Couette geometry.

The shear rate γ̇ at a radial distance r from the axis can be expressed as follows:

γ̇ = rdωdr (2.2)
At a small element of the cylindrical surface dA = rdφdz at radius r of height L, the
tangential force dF resulting from the internal friction equals the stress times area:

dF = τrdφdz
while the corresponding torque M is given by:

dM = rdF = τr2dφdz
The last differential equation can be integrated:

M =
∫ L

0

∫ 2π

0
τr2dφdz = 2πLr2τ

Since the liquid does not undergo an angular acceleration this torque M should be con-
stant. Thus the shear stress is given by:

τ = M
2πLr2 (2.3)

By combining Eqs.(2.1), (2.2) and (2.3) one obtains:

rdωdr = M
2πLη · 1

r2
or: dω

dr = c1 · 1
r3 (2.4)

where the constant c1 is given by:
c1 = M

2πLη
The solution of Eq.(2.4) is:

ω(r) = c2 − c1 1
2r2 (2.5)
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where c2 is a integration constants. c1 and c2 can be found from the boundary conditions.
We assume that there is no slip at the cylinders walls:

ω(a) = −Ωa and ω(b) = Ωb
where the angular velocities are taken with opposite sign (counter rotating cylinders).
Then:

c1 = 2a2b2 (Ωa +Ωb)
b2 − a2 and c2 = a2Ωa + b2Ωb

b2 − a2
Now one can find expressions for angular velocity, shear rate and shear stress as a function
of the radial distance r:

ω (r) = a2b2 (Ωa +Ωb) (a−2 − r−2)

b2 − a2 −Ωa (2.6)

γ̇ (r) = 2a2b2
(b2 − a2) r2 (Ωa +Ωb) (2.7)

τ (r) = η 2a2b2
(b2 − a2) r2 (Ωa +Ωb) (2.8)

Using Eq. (2.7) we can plot graphically the shear rate distribution in the gap between
the cylinders. In Figure 2.3 shear rate as a function of r is shown. From the plot it is
clear that the shear rate is not constant in the gap. Shear rate changes across the gap are
expected with a wide gap Couette device [1]. The variation is higher for higher angular
velocities as can be seen from Figure 2.3.

24 27 30 33 36 39 42 45
0

2

4

6

r, mm

sh
ea

r 
ra

te
, 

1/
s

Figure 2.3: Shear rate variation across the gap. The lines corresponds to different ve-
locities of the cylinders: solid line Ωa = 1 rpm, dash-dot line Ωa = 5 rpm and dot line
Ωa = 10 rpm. In all cases the ratio Ωa/Ωb = 1.
It is interesting to note that the variation of ∆γ̇ over the gap is independent of the

relative gap width:
∆γ̇ = γ̇a − γ̇b = 2 (Ωa +Ωb)
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However the relative variation is equal to:
∆γ̇〈γ̇〉 = 2 γ̇a − γ̇b

γ̇a + γ̇b = 2 b2 − a2
b2 + a2

i. e. the relative variation is independent of the rotational speeds and decreases with
decreasing gap width.
Above equation (2.7) can be derived also directly from the Navier-Stokes equation for

low Reynolds numbers as it was done in [2], [3]. The final result will be the same.

2.2.2 Stagnant zone position and shear rate
The position of the stagnant zone can be calculated from Eq.(2.5) with the condition
ω = 0 at r = rs. Then:

ω(rs) = −1
2c1r

−2s + c2 = 0

rs =
√ c1

2c2
rs =

√

a2b2 (Ωa +Ωb)
a2Ωa + b2Ωb (2.9)

Using Eqs.(2.7) and (2.9) one can calculate also the shear rate at the stagnant layer:

γ̇s = 2 (a2Ωa+b2Ωb)
b2 − a2 (2.10)

2.2.3 Shear rate variation over the floc
As presented in Figure 2.3, the shear rate varies across the gap. Thus one has to calculate
also the variation in the shear rate over the entire aggregate. For aggregates the maximum
relative variation of the shear rate over the aggregate at the stagnant zone is given by:

∆γ̇
γ̇ = D

γ̇
∣

∣

∣

∣

dγ̇
dr

∣

∣

∣

∣

= 2D
rs

where D is the diameter of the aggregate and rs the position of the stagnant zone. For
a typical aggregate considered in the experiments (2 mm diameter) the variation of the
shear rate is about 10 % over the whole aggregate.

2.2.4 Laminar flow and Taylor vortices
The analytical solution for the flow profile assumes a laminar flow. At higher rotational
speeds the laminar flow in the gap becomes distorted and Taylor vortices could arise [4].
When Taylor vortices occur the actual flow field will differ from the calculated one and
will influence the hydrodynamic stresses on the aggregates at the interface. Below an
estimate of the shear rate at which Taylor vortices are expected to appear is given.
It is known that the instabilities will first occur for a rotating inner cylinder. For

simplicity we will consider that only the inner cylinder is rotating. The outer cylinder is
assumed to be stationary. The criterion of stability for long cylinders is given by:

Re < Recrit = 41.5
√ b

b− a = 60.5
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For our system: Re = ρvrms (b− a) /η, where vrms ≃ √1/3aΩa is the root mean square
velocity in the gap. (The average velocity is close to zero due to the counterrotating
cylinders.) Moreover the Ωa can be linked to the shear rate γ̇s at the stagnant zone ifrs = (a+ b)/2:

γ̇s = 2a2
r2s − a2Ωa

Then:
γ̇s < 2a

r2s − a2
η√3Recrit
ρ (b− a) ≃ 1 s−1

In the experiments γ̇ ranges from 0 to 2.5 s−1 so we may expect the onset of Taylor
vortices. However, we have to consider also the presence of the interface. The interface
is expected to play a stabilizing role preventing the development of the vortices. This
is supported by the experiments, where outward motion of particles or dust was not
observed.

2.2.5 Finite size effects
At the gap between the bottom of both cylinders there will be also a shear flow due to the
rotation of the bottom with the outer cylinder [5]. The presence of this gap can influence
the flow profile at the interface. The creeping flow equation for ω(r, z):

∂2ω
∂r2 + 3

r
∂ω
∂r + ∂2ω

∂z2 = 0
was solved numerically for the geometry of the shear cell.
[ This equation can be obtained by considering the torque balance on an annulus of

liquid bounded by the planes: r = const, r + dr = const, z = const, z + dz = const:
2πdz

(

(r + dr)2 τrφ(r + dr, z)− r2τrφ(r, z)
)

+ 2πr2dr (τzφ(r, z + dz)− τzφ(r, z))
= 0 (2.11)

or ∂
∂r

(r2τrφ)+ ∂
∂z

(r2τzφ) = 0 (2.12)
where τrφ = ηr∂ω/∂r and τzφ = ηr∂ω/∂z. Substitution of these expressions in Eq 2.12
results in the given differential equation. ]
The boundary conditions for this geometry are given by:

r = a h1 < z < h2
z = h1 0 < r < a

}

ω(r, z) = −Ωa

r = b 0 < z < h2
z = 0 0 < r < b

}

ω(r, z) = Ωb

z = h2 a < r < b } ∂ω
∂z (r, z) = 0

where z = 0 corresponds to the bottom plane of the outer cylinder, z = h1 corresponds
to the bottom plane of the inner cylinder and z = h2 corresponds to the liquid-fluid
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interface. Using a finite volume scheme a set of algebraic equations was obtained. This
set was solved following the accelerated relaxation method. Figure 2.4 shows the resulting
ω field (Figure 2.4a) and the rotational speed and shear rate along the interface at z = h2
(Figure 2.4b). For simplicity the inner cylinder is taken stationary (Ωa = 0) and only the
rotation of the outer has been considered. In Figure 2.4b the angular velocity and the
shear rate for the real and the ideal (infinitely long cylinders) geometry are compared.
No significant differences can be observed. Clearly the assumption to neglect edge effects
for the analytical expression of the flow field is justified.
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Figure 2.4: a) The velocity distribution in the gap between the two cylinders. The inner
cylinder is considered stationary. The calculations are made until the interface level (33
mm from the bottom). b) Comparison between the ideal system (presented with the lines)
and real one (the points). With black color is presented the angular velocity and with grey-
the shear rate.

2.3 Response of the fluid to the speed adjustments
To keep the aggregate in the stagnant zone and consequently in the field of view of the
camera, the cylinder speeds have to be adjusted using a feedback loop. Crucial in this
approach is the response time of the flow field to these adjustments. In the experiments
it was observed that when the motion of the cylinders is stopped suddenly, the fluid and
the particles are still moving for relatively long time. Therefore we calculate the transient
velocity profile in the fluid.
The calculations were done following Bird [6],[7]. Let us consider a liquid layer between

two moving concentric cylinders. The system is depicted in Figure 2.2. The cylinders are
moving with velocities Ωa and Ωb in opposite directions. The gap between them is (b−a).
For our system vr = vz = 0 and vθ = rω(t, r) where v is the velocity. From the equation
of motion for an incompressible fluid we find that:

2πr3drdzρ∂ω∂t = 2πdrdzη ∂
∂r

[

r3∂ω∂r
]

(2.13)

where η is the viscosity and ρ the density of the liquid phase.
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The initial and the boundary conditions for the above equation are:
ω = 0 at t = 0

ω = −kΩa at r = a = kb
where k = a/b is the ratio between the cylinders radii. In our case k = 0.53.

ω = Ωb at r = b
The following dimensionless quantities are introduced:

Radial coordinate: ξ = r
b

Time: τ = ηt
ρb2

Tangential velocity: φ = rω
bΩ

Angular velocity: α = Ωa
Ω

where Ω = Ωb +Ωa. Then Eq.(2.13) becomes:
∂φ
∂τ = ∂

∂ξ
[1
ξ
∂
∂ξ (ξφ)

]

(2.14)

With initial and boundary conditions:
φ = 0 at τ = 0

φ = −aΩa
bΩ = −kα at ξ = k (2.15)

φ = bΩb
bΩ = 1− α at ξ = 1 (2.16)

The solution has the form:
φ (ξ, τ) = φ∞ (ξ)− φtr (ξ, τ)

where φ∞ (ξ) is the steady-state solution which will be reached for τ → ∞. It can be
received from Eq.(2.14) with ∂φ/∂τ = 0, i.e.:

φ∞ (ξ) =
[1− α (1− k2)

1− k2
]

ξ − [ k2
1− k2

]

ξ−1 = Aξ −Bξ−1

This expression is equivalent to Eq. (2.6). The transient function φtr (ξ, τ) is also solutionof Eq.(2.14), now with the initial and boundary conditions:
φtr = φ∞ at τ = 0 (2.17)
φtr = 0 at ξ = k
φtr = 0 at ξ = 1
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According to the method of separation of variables, we can represent φtr as:
φtr (ξ, τ) = f (ξ) g (τ)

Then from Eq.(2.14) we can generate two ordinary differential equations:
1
g
dg
dτ = −λ2

1
f

d
dξ

[1
ξ
d
dξ (ξf)

]

= −λ2 (2.18)

where λ is a separation constant.
A solution of the first expression in Eq.(2.18) is:

g (τ) = exp (−λ2τ) (2.19)
The second equation can be transformed to:

ξ2λ2 d2f
d (ξλ)2 + ξλ df

d (ξλ) +
(ξ2λ2 − 1) f = 0

which is the Bessel equation and has solution [8]:
f (ξ) = AJ1 (λξ) +BY1 (λξ)

in which A and B are constants and J1 and Y1 are Bessel functions of first order. From
the boundary conditions (Eq. 2.17), one can receive:

0 = AJ1 (λ) +BY1 (λ)
0 = AJ1 (λk) +BY1 (λk)

And thus:
B = −J1 (λ)

Y1 (λ)A

B = −J1 (λk)
Y1 (λk)A

From these equations one obtains a condition for the separation constant:
J1 (λn)Y1 (λnk) = J1 (λnk)Y1 (λn)

The general solution is a superposition of all these solutions:

φtr (ξ, τ) =
∞
∑

n=1
Cn exp (−λ2nτ)Z (λnξ) (2.20)

In which Cn = An/Y1 (λnk)and:
Z (λnξ) = Y1 (λnk)J1 (λnξ)− J1 (λnk)Y1 (λnξ) (2.21)

To obtain the values for λn the Bessel functions can be approximated, for z > 1 as [9]:
J1 (z) ≈ √

2
πz cos

(z − π
2 − π

4
)

Y1 (z) ≈ √

2
πz sin

(z − π
2 − π

4
)

(2.22)
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The approximation is good enough for our purpose. Then one can find λn:
λn = nπ

1− k for n = 1, 2, ..∞ (2.23)
The values for Cn can be obtained from the initial condition Eq.(2.17) which leads to:

φ∞ (ξ) =
∞
∑

n=1
CnZ (λnξ)

Using the orthogonal properties of the Bessel functions, we multiply both sides by Z (λmξ) ξdξ
and then integrate from k to 1. The only term on the right side that contributes is that
for which m = n. Hence we obtain:

Cn = πJ1 (λn) [(1− α)J1 (λnk) + αkJ1 (λn)]
J21 (λnk)− J21 (λn)

The final expression for the unsteady state velocity profile reads:
φ (ξ, τ) = φ∞ (ξ)− φtr (ξ, τ)

where the steady-state solutions is:

φ∞ (ξ) =
[1− α (1− k2)

1− k2
]

ξ − [ k2
1− k2

]

ξ−1

and the transient function is given by:

φtr (ξ, τ) = π
∞
∑

n=1

J1 (λn) [(1− α)J1 (kλn) + αkJ1 (λn)]
J21 (kλn)− J21 (λn)

× [Y1 (kλn)J1 (ξλn)− J1 (kλn)Y1 (ξλn)] exp (−λ2nτ)
where λn has been given by Eq.(2.23). From the above expression the characteristic time
tch for the process can be calculated:

tch = (1− k)2 ρb2
π2η with n = 1

For the water phase we received tch = 45 s. We consider here the n = 1 mode because
that is the slowest mode: tn = tch/n2. Figure 2.5 shows how the steady-state will be
reached; there the calculated profiles for different times are presented. As one can see
indeed the calculated characteristic time is close to the steady state profile.
Increasing the viscosity of the liquid phase will additionally lead to lower characteristic

times. In Table 2.1 the characteristic times for all the liquids used in our study are
presented: water, water with glycerol (35 wt.%) and pentadecane.
We initially intended to keep the aggregates in the stagnant zone by continuously

adjusting the speeds of the cylinders. However due to the long characteristic times in
practice it is difficult to keep the aggregates in the stagnant zone. The way the experiments
are performed was changed. The aggregate is allowed to rotate slowly in the Couette
device. The CCD camera is kept stationary and the aggregate is recorded when it passes
the field of view. The rotational speed of the cylinders is set to minimize the velocity of
the aggregate.
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Figure 2.5: Calculated transient velocity profile φtr (ξ, τ) for water phase at different times
(with circles t = 5 s, with rhombs t = 20 s and with crosses t = 45 s. The steady state
profile φ∞ (ξ) is presented with the black line. The parameters used for the calculations
are: k = 0.53, ρ = 1000 kg/m3, ̟a = 7 rpm, ̟b = −3 rpm and n = 19.

System ρ, kg/m3 η, mPas tch, s
Water 1000 1 45
Water+Gly 1090 2.34 21
Pentadecane 773 2.34 15
Table 2.1: Calculated characteristic times

The two cylinders are driven by ribbed belts from two permanent magnet D.C. servo-
motors. The motor speeds are controlled from a personal computer. The actual rotation
speeds were measured independently and compared with the computer digital read out.
It was found that they coincide very well. The results are presented in Figure 2.6 where
ωm is the measured angular velocity in rpm and ωd is the digital read-out. The open
circles correspond to the outer cylinder and the solid rhombs to the inner cylinder. It was
found that the measured and the displayed angular velocity coincide quite well. For the
rotational speeds used in the experiments (less than 15 rpm) the error is less than 2 %.

2.4 Calculating the shape of the interface
The behavior of the aggregate is determined by the forces acting on the particles, hence
it is important to know which forces are present. A key issue related to this is the shape
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Figure 2.6: Measured independently (ωm) versus digital read-out (ωd) cylinder speeds in
rpm. The speed of the outer cylinder is given with open circles and the speed of the inner
with solid rhombs.

of the interface, since this may add an extra force to the system due to its curvature.
Therefore it is important to know the interface shape and control it in the experimental
system. In the next sections we calculate this interface shape and present a method to
control and measure it.
We have an interface between two concentric cylinders with radii a and b (see Figure

2.7a). The three phase contact angles where the interface meets the cylinders walls are
noted as θa and θb . In the most general case θa �= θb. To calculate the interface profile one
has to consider the forces acting upon an annulus of liquid containing the interface. The
cylindrical shell has a radius r, thickness dr and height h. In Figure 2.7b the free body
diagram of the liquid annulus and the acting forces are depicted. There are two forces
present in the system: the net force due to the hydrostatic pressure and the interfacial
tension force. We consider here only the vertical component of these forces. For the
interfacial tension force we can write:

F (γ)z = 2πγ [(r + dr) sinβ(r + dr)− r sinβ(r)]
while the hydrostatic pressure force is given by:

F (p)z = 2πrdr [P2 − P1 − gρu (h− z)− gρlz]
where ρu and ρl are the density of the upper and the lower liquid phase, γ is the interfacialtension force, φ is the interface slope angle, g is the gravitation acceleration and P1 and P2
the hydrostatic pressure at the top and the bottom surface of the elementary cylindrical
shell with radius r thickness dr and height h. Since the net force on this shell should be
zero, one receives:

1
r
d
dr (r sinφ (r)) =

ρugh+ P1 − P2
γ + g∆ρ z

γ (2.24)
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Figure 2.7: a) A sketch of an interface in the gap between two concentric cylinders. With
a and b are denoted the inner and outer cylinder radii and with θa and θb the contact
angles at the walls. With the dashed line is presented the elementary volume with thickness
dr and height h. b) A magnified sketch of the elementary volume used for the balance of
forces. The interface is described with z = z(r), ρ1 and ρ2 are the density of the upper
and the lower liquid phase, γ is the interfacial tension force, φ (r) is the interface slope
angle and P1 and P2 the hydrostatic pressure at the top and the bottom surface of the
elementary volume.

with ∆ρ = ρl − ρu. If the interface between the two liquid is defined by z = z (r), then
dz/dr = z′ = tanφ and sinφ = z′(1 + (z′)2)−3/2. Substitution in Eq. (2.24) gives:

z′′
(

1 + (z′)2
)3/2 + z′

r
(

1 + (z′)2
)1/2 = α+ βz (2.25)

where α = (ρugh+ P1 − P2) /γ and β = (g∆ρ) /γ are constants. This equation is the so
called Young-Laplace equation [10] which describes a curved interface.
The boundary conditions read:

z′ = tan(θa − π
2 ) at r = a (2.26)

z′ = − tan(θb − π
2 ) at r = b (2.27)

If we scale every length on a:

r̃ = r
a , z̃ = z

a , z̃′ = dz̃
dr̃ = z′, z̃′′ = d2z̃

dr̃2 = az′′

we can rewrite Eq. (2.25) in dimensionless form:
z̃′′

(1 + z̃′2)3/2 + z̃′
r̃ (1 + z̃′2)1/2 = α̃+ β̃z̃ (2.28)
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with α̃ = aα and β̃ = a2β. The new constant β̃ is the so called Bond number Bo which
is a dimensionless constant that quantifies the ratio between gravity and capillary forces:

Bo = g∆ρ a2
γ = a2

k2

where k = β−1/2 is the so-called capillary length.
Eq.(2.28) is a second order nonlinear differential equation that can be solved only

numerically. To solve this equation one can write it as a set of two first order differential
equations:

z̃′ = u
u′ =

(

α̃+ β̃z̃
)

(1 + u2)− (u/r̃) (1 + u2) (2.29)

which can be solved using a 4th order Runge- Kutta scheme. The boundary conditions
are:

z̃′ = tan(θa − π
2 ) at r̃ = 1 (2.30)

z̃′ = − tan(θb − π
2 ) at r̃ = b/a (2.31)

which is the dimensionless form of Eqs.(2.26, 2.27). Since α̃ is an unknown constant which
depends on the vertical position at which z̃ = 0 we define:

z̃ = 0 at r̃ = 1 (2.32)
Starting with a guess value for α̃ and with boundary conditions Eqs.(2.30, 2.32), the
profile is calculated and from that the value of z̃′ at r̃ = b/a is received. This value
is compared with its real value, Eq.(2.31), and α̃ is optimized until both values become
equal:

∣

∣

∣ z̃′ (b/a) + tan(θb − π
2 )

∣

∣

∣ < ε
within the computational precision ε.
In Figure 2.8 the results from these calculations are presented. An interface between

water and pentadecane. was considered (ρu = 773 kg/m3, ρl = 1000 kg/m3 and γ = 0.052
N/m). For simplicity θa = θb is taken. The contact angle varies between 10◦ and 90◦.
The wetting properties of the cylinder surfaces in general will lead to a curved interface.
It is difficult to achieve a flat interface by varying only the physicochemical properties
of the system (ρu, ρl and γ) or the geometrical characteristic of the apparatus (radii a,
b and the gap width (b− a)). The most efficient way to obtain a flat interface is to pin
the contact angle at the cylinder surface to 90◦. Therefore the Couette apparatus has
been modified. Figure 2.9 illustrates the modification. Both cylinders have a hydrophilic
(Steel) lower part and a hydrophobic (Perspex) upper part. The transition between the
two parts will act as a pinning line for the interface between the hydrophilic and the
hydrophobic liquid (e.g. water and oil). Once the interface has been pinned, the contact
angle at the cylinders walls can be adjusted to 90◦ by controlling the amount of the lower
liquid.
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Figure 2.8: Interface profile z(r) for different contact angles at the cylinders walls. In all
cases θa = θb, the dash line corresponds to θa = 90◦, the circles to θa = 70◦, the rhombs
to θa = 50◦, the crosses to θa = 30◦ and the squares to θa = 10◦. The parameters used
in the calculations are for a water/pentadecane interface: ρ1 = 773 kg/m3, ρ2 = 1000
kg/m3, γ = 0.052 N/m.

2.5 Measurement of the local curvature of the inter-
face

In the previous section it was shown that it is important to have a contact angle of 90◦ at
the cylinders walls. It was reached in practice by making the cylinder surfaces from two
different materials; on their transition the interface will pin. To achieve a flat interface we
need to control the amount of lower liquid added, and so we need a method to measure
the interface shape. Below this method for measuring the interface shape is described.

2.5.1 Principle of the measurement
When a narrow light beam passes through the interface, its propagation direction will
change due to refraction, if the beam is not perpendicular to the interface. In Figure
2.10 the principle is illustrated. In the first case the beam is perpendicular to the inter-
face and not changing direction passing through it. In the second case the beam is not
perpendicular and changes direction after passing the interface. If the incoming beam
is oriented perpendicular to the ideal flat interface, then the deviation of the outgoing
beam will be a measure of the interface slope at that position. The angle of incidence of
the beam is denoted as θ1 and it is also equal to the slope of the interface at that point.
Due to the difference in the refractive index the beam will be shifted to direction θ2 after
the interface. From Snell’s refraction law the propagation direction of the outgoing beam
relative to the interface is given by:
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Figure 2.9: Illustration of pinning of the interface. To the walls of the cylinders rings
with different wetting properties are attached. The bottom part is from steel (hydrophilic)
and the upper is from Perspex (hydrophilic material).

θ2 = arcsin
(n1
n2 sin θ1

)

(2.33)
where n1 and n2 are the refractive indices relative to vacuum of the lower and upper liquid
phase. We can measure the deviation d of the beam from a reference point (chosen at
θ1 = 0◦) at distance h from the interface. Then one obtains via geometrical arguments:

tan (θ2 − θ1) = d
(h− z) (2.34)

where z is the deflection of the interface; it is the difference of the vertical positions of
the flat and the curved interface. Combining Eqs.(2.33) and (2.34) one can receive an
expression for the interface slope angle θ1:

arcsin
(n1
n2 sin θ1

)− θ1 = arctan
( d
h− z

)

(2.35)
In this form we still can not determine θ1 because the displacement z is not known.
However if we take the distance hmuch larger than z , then Eq.(2.35) can be approximated
as:

arcsin
(n1
n2 sin θ1

)− θ1 = arctan
(d
h
)

for z ≪ h (2.36)
and we have a method to determine the interface slope θ1 at the position of the laser
beam.
From the last equation the accuracy of the method can be estimated as ∆θ1 =

(∂θ1/∂d)∆d. For a typical situation with ∆d = 1 mm and n1 = 1.33 (water), n2 = 1
(air) and h = 1 m, one obtains ∆θ1 = 0.17◦. Thus the method is very accurate.

2.5.2 Experimental verification of the method
To test the method described in last section, a model setup was used as substitution of
the real Couette device. This model setup allows simpler measurements and calculations.
It consists of a glass Petri dish filled with water. Using the top edge of the dish for
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Figure 2.10: Illustration of the method for measuring the interface shape. a) When the
beam is perpendicular to the interface there is no radial shift in its position after the
interface. b)When the beam is not perpendicular to the interface (which corresponds to a
curved interface), it will refract at different angle after the interface. θ1 is the angle of
incidence of the beam, θ2 is the angle of refraction, d is the shift in the beam position at
a certain distance h after the interface and z is the interface deflection.

pinning of the w/a interface, one can control the interface in the same way as in the real
experimental setup by using hydrophilic/hydrophobic separation (see Figure 2.11). The
set-up has been leveled in order to avoid a nonsymmetrical shape of the meniscus.
A He-Ne laser was placed under the dish in such way that the beam crosses the bottom

of dish perpendicularly, close to the rim of the dish where the interface slope is steeper
and the refraction of the beam at the liquid-air interface will be large. The position of
the spot of the laser beam, using an empty dish, at a distance h = 1 m above the dish, is
marked as a reference point. This position corresponds to a beam refracting from a flat
interface. Next a known volume of water is poured in the dish until it protrudes over the
edge and forms a convex (curved upwards) meniscus. The deflection d of the beam at
height h from the reference point (zero position) is measured. In the next step a known
small volume of water is removed by means of a pipette and the deflection is measured
again. This is repeated until the meniscus curvature visibly becomes concave (curved
down). The experiment is repeated three times in order to judge the reproducibility of
the method. The collected data is presented in Figure 2.12 as the shift in the radial
position d versus the corresponding volume of water in the dish V . Since the interface
curvature is the cause of the shift, the volume corresponding to a flat interface is at d = 0.
It was found that a flat interface corresponds to Vflat = 25.45 ± 0.21 ml. Based on the
dimensions of the Petri dish we can verify the volume of the dish that corresponding to
flat interface: Vflat = πR2dishHdish = 25.5 ml. This is in agreement with the measured
value. From the test performed in the Petri dish we have seen that the method gives
good estimation of the interface flatness. The advantages of the method are: it is fast
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Figure 2.11: Illustration of the model setup for testing the laser refraction from an inter-
face.

and accurate, the disadvantage is: it measures the interface slope only at one point and
not the whole interface curvature.
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Figure 2.12: Measured shift d in the radial position of the beam spot plotted against the
corresponding water volume V .

2.5.3 Implementation in the experimental setup
The experimental setup with the laser implemented is depicted in Figure 2.13. The bottom
of the outer cylinder is made from glass. A narrow laser beam (He-Ne) passes through
it and is transmitted across the interface. The direction of the beam is parallel with the
cylinder surfaces and it is positioned close to the outer cylinder where the interface slope
is the steepest. The beam passes the Couette device, travels a long distance in the air
(1.5 m) and reaches a perpendicular screen. As a reference point for the measurements
the position of the beam on the screen with an empty Couette device is taken. This
point corresponds also to a flat interface and it also compensates for errors coming from
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Figure 2.13: Measuring of the interface shape in the experimental setup.

refraction of the laser beam in the glass bottom. The lower phase is poured in the device.
We add/remove small quantities of water while checking on the screen the deflection of the
beam from the reference point. At the moment they coincide we have flat w/a interface.
Then the upper liquid phase can be added. Due to the pinning of the contact line at the
hydrophilic/hydrophobic transition of the cylinders, the w/o interface remains flat.

2.6 Summary
In this chapter the flow properties in our Couette geometry were investigated. From the
results it can be concluded that the experimental device is suited to study the deformation
and break-up of 2D aggregates. It is important to realize that shear rate in the gap is not a
constant. The variation of the shear rate over the aggregate has to be taken into account.
Possible deviations due to end effects or flow instabilities were found to be insignificant.
Also, a simple model for the adaptation time of the flow field to changes of the cylinder
speeds has been presented. The transient flow profiles at different times were calculated.
The characteristic time for reaching the steady-state profile for the water phase is 45 s.
Due to this long response time we are not able to keep the aggregate under investigation
in the field of view of the CCD camera but we allow for a slow rotation of the aggregate.
The camera is kept stationary and the aggregate is observed when it passes through its
field of view.
To prevent the appearance of an extra force on the particles due to the interface

curvature the liquid-liquid interface should be completely flat. To this end we mod-
ified the Couette device in order to be able to control the interface shape. First, a
hydrophilic/hydrophobic transition at the cylinder surfaces was created, where the inter-
face can be pinned. Second, by optimizing the amount of lower liquid and checking the
interface slope by laser beam refraction, a flat interface is achieved.
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Chapter 3

Interface profile around a
single particle and capillary
force between two particles
Abstract

In this chapter we investigate the influence of a spherical particle trapped at a liquid-liquid
interface on the interface profile. Moreover, the capillary interaction between two particles at
the interface is calculated based on the interface profile around these particles. Special attention
is paid to the boundary conditions along the tpc-line on the particle surface, in relation to the
wetting angle at contact.

3.1 Introduction
In this chapter we investigate particles at the interface without applying a shear flow to
the system. The starting point for this investigation is the behavior of a singe particle
trapped at the interface. In the first section we describe the interface profile around a
single spherical particle. We are interested in the deformation of the profile caused by the
particle. If there are more particles present that deformation will give rise to a capillary
interaction force between them.
The capillary interaction between particles is usually calculated using the linear super-

position approximation (LSA), which states that the total deformation of the interface
is determined by superposition of the deformations due to the individual particles [1]. It
is valid for not too close distances between the particles. For close distances the correct
boundary conditions will be violated and this results in a wrong calculation of the inter-
action force. This is the case for particles in a dense aggregate as in our experiments.
In the present chapter we presented a method to calculate the exact interaction force.
Here we will consider only the interactions between two particles. Before we do so, first
the exact boundary conditions for the three phase contact line on a wall, a cylinder and
finally a sphere are derived. Once the boundary conditions are known, the interface pro-
file can be calculated by solving the Young-Laplace equation, that can be linearized in
very good approximation for the particles considered in this thesis. In the last section
the interaction force between two spherical particles will be derived. This chapter serves

27
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as an introduction to the theory describing the interactions between multiple particles,
which is presented in chapter 4.

3.2 Description of the interface near a single particle
Our solid particles approach the interface under the influence of gravity. Depending on
the size of the particle, the density ratio and the interface nature, the particles can pass
the interface or stay trapped there. When the density of the particle ρp is intermediatebetween the densities of the two liquid phases (ρl > ρp > ρu), the particle will always betrapped at an equilibrium position in the interface. When ρp is greater than either ρl,the particle still can be supported at the interface by interfacial tension forces [2], [3].
We consider a spherical particle at a fluid interface with a density ρp and a radiusRp, where the interface meets the solid surface at a contact angle αc (measured through

the lower fluid). This angle is determined by the wetting properties of the particle. The
situation is depicted in Figure 3.1. The interface is formed between the lower fluid with
density ρl and upper fluid with density ρu, the interfacial tension between them is γ. Nearthe particle the interface is curved and far from the particle it is planar. Also, the particle
surface is considered to be homogeneous and smooth. The vertical distance between the
planar interface and the contact line is ζc and between the planar interface and the centerof the particle ζm. The angle β is the angle between the vertical and the radius to the linewhere the interface meets the surface of the sphere, i.e. the three phase contact (tpc-)
line. The angle ψ = (αc − β) is the angle between the horizontal and the tangent of the
meniscus at the tpc-line.
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Figure 3.1: Sketch of a single particle at the interface.
The simplest way to determine the position of a particle at a liquid-liquid interface is

to make an analysis of the forces acting on the particle. There are three distinct vertical
forces present. The vertical component of the interfacial tension force:

F γ = 2πγRp sinψ sinβez (3.1)
The gravitational force:

F g = −4
3πR

3pρpgez (3.2)
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where g is the gravitation acceleration.
The third force is the buoyancy force:

F b = −
2π
∫

0

π
∫

0
P (z) erR2p sin θdθdφ

= −2πR2p







β
∫

0
Pu (z) cos θ sin θdθ +

π
∫

β
Pl (z) cos θ sin θdθ





 ez

with the pressure in the upper and lower phase given by:
Pu (z) = P0 − gρuz
Pl (z) = P0 − gρlz

where P0 is the pressure far from the particle at the planar interface where z = 0.
Additionally, for a point on the particle surface, z can be expressed as:

z = ζm +Rp cos θ
where: ζm = ζc −R cosβ. The final expression for buoyancy force is:

Fb,z = 2
3πR

3pg∆ρ cos3 β + 2
3πR

3pg (ρl + ρu) (3.3)
−πR2pξmg∆ρ sin2 β

where ∆ρ = ρl − ρu. The equilibrium condition for the vertical forces yields: ∑F =
Fγ + Fg + Fb = 0 or:

(cosβ − 1
3 cos3 β

)+ 2 (ρl + ρu − 2ρp
)

3∆ρ
− ζc
Rp sin

2 β − 2
(qRp)2 sinβ sin (β − αc) = 0

(3.4)

where q = √g∆ρ/γ is the so-called reciprocal capillary length. There are two unknown
parameters: ξc and β. Hence we need a second equation to obtain a solution. To this
end we consider the profile of the interface z (r) near the particle. To calculate the profile
one has to solve the Young-Laplace equation (see section 4 of Chapter 2):

1
r
d
dr



r dz/dr
√

1 + (dzdr)2



 = q2z (3.5)

This equation can be derived from a force balance considering the vertical forces acting
on a hypothetical cylindrical liquid annulus around the particle, similar to the analysis
in Chapter 2. It is a second order nonlinear partial differential equation but it can be
simplified under some assumptions. It was proven by Chan et al. [4] that when the Bond
number (Bo = Rp2q2) is small (Bo ≪ 1), the meniscus slope is small, too (small meniscus
deformation), i.e. (dz/dr)2 ≪ 1. In this case one can linearize Eq. (3.5) and an analytical
expression for ξc can be obtained:

1
r
d
dr

(

rdzdr
)

= q2z (3.6)
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Eq.(3.6) is a Bessel equation that has an analytical solution:
z (r) = aI0 (qr) + bK0 (qr) (3.7)

where I0 and K0 are the modified Bessel functions of the first and second kind, both of
zeroth order. The boundary conditions for Eq.(3.7) are determined by the meniscus that
has to meet the particle surface at a well defined angle and becomes flat at infinity:

dz
dr = sin (αc − β) at r = Rp sinβ (3.8)
z = 0 at r → ∞ (3.9)

With these boundary conditions the solution reads:

z (r) = ζcK0 (qr)
K0 (qRp sinβ) (3.10)

where ζc is determined by:
dz
dr

∣

∣

∣

∣Rp sinβ
= sin (αc − β) (3.11)

= −kζcK1 (qRp sinβ)
K0 (qRp sinβ)

From the last equation together with Eq. (3.4) the following set of equations is formed:
(cosβ − 1

3 cos3 β
)+ 2 (ρl + ρu − 2ρp

)

3∆ρ
− ζc
Rp sin

2 β − 2
(qRp)2 sinβ sin (β − αc)

= 0 (3.12)

sin (αc − β)K0 (qRp sinβ) + qζcK1 (qRp sinβ) = 0
Now the values for ζc and β can be determined for given ρl, ρu, ρp, Rp, γ and αc. It
was checked that for all cases of interest indeed (dz/dr)2 ≪ 1. In Table 3.1 the results
for ζc and β are presented for glass particles at a water/air (w/a) and a water/oil (w/o)interface. The particles considered have a radius Rp = 115 µm and a density ρp = 2480
kg/m3. As one can see αc ≈ β for our case and thus the position of the particle at the
interface is determined by the contact angle αc. In Figure 3.2 the calculated interface
profile, using Eq.(3.10), is shown.

System γ ∆ρ q−1 αc β ζcmN/m kg/m3 mm µm
Water/Air/Glass 71 1089 2.6 55◦ 54.9◦ -0.73
Water/Oil/Glass 44 317 3.8 40◦ 39.7◦ -1.28

Table 3.1: Calculated interface parameters for glass particles at w/a and w/o interface.
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Figure 3.2: Calculated interface profile for a glass particle with Rp = 115 µm and density
ρp = 2480 kg/m3. Two cases are considered w/a interface (with solid line) and w/o
interface (with dashed line). The input parameters are shown in Table 3.1.

3.3 Description of the interface slope near a three
phase contact line

For two particles in close proximity their interface profiles will overlap which leads to
a non flat tpc-line along the particles. The situation is depicted in Figure 3.3 for two
similar spheres. In that case the boundary conditions are a more complicated function
of the interface slope. Below the correct boundary conditions will be calculated We start
with the simplest case of an interface meeting a flat wall, followed by an interface meeting
a cylinder and, eventually, a sphere.
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Figure 3.3: Overlap of the interface profiles of two particles.
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3.3.1 Flat wall geometry
Suppose the liquid-liquid interface contacts a solid wall, in the ey-ez plane, at the originof a Cartesian coordinate system, while the interface is described by

z = f(x, y)
The interface has an arbitrary shape. The slope of the three phase contact line (tpc-line)
along the wall is given by tanφ = ∂f/∂y = fy. A second orthogonal coordinate system is
introduced to describe the contact angle and the resulting surface tension force on that
wall:

eξ = ex
eη = cosφ ey + sinφ ez
eζ = − sinφ ey + cosφ ez

In Figure 3.4 the two coordinate systems are presented. The direction eη has been chosentangential to the tpc-line in point P.
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Figure 3.4: A sketch of the coordinate systems used to describe an arbitrary interface
meeting a flat wall. a) shows the wall while b) is a close look of the surface element at
position P . With grey color is presented the interface surface.

In the new coordinate system the interface is described by
ζ = g(ξ, η)

and the contact angle αc is given by
tan(αc − π/2) = ∂g/∂ξ = gξ (3.13)
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In order to express αc in the (x, y, z) coordinates we compare the representation of the
displacement dr in both coordinate systems:

dr = dx ex + dy ey + (fxdx+ fydy) ez
= dx eξ + dy (cosφ eη − sinφ eζ

)

+(fxdx+ fydy) (sinφ eη + cosφ eζ
)

= dx eξ + ((fxdx+ fydy) sinφ+ dy cosφ) eη
+((fxdx+ fydy) cosφ− dy sinφ) eζ

= dξ eξ + dη eη + dg(ξ, η)eζ
Hence:

dξ = dx (3.14)
dη = (fxdx+ fydy) sinφ+ dy cosφ
dg = (fxdx+ fydy) cosφ− dy sinφ

From last equation we can calculate ∂g/∂ξ = gξ:

gξ =
(dg
dξ

)

dη=0
=

((fxdx+ fydy) cosφ− dy sinφ
dx

)

dη=0
(3.15)

From Eq. (3.14) one obtains:

dy = −fx sinφ
cosφ+ fy sinφdx = −fxfy

1 + f2y dx (3.16)

where we have used the following relations:

sinφ = tanφ
√1 + tan2 φ = fy

√

1 + f2y
cosφ = 1

√1 + tan2 φ = 1
√

1 + f2y
Combining Eqs. (3.15) and (3.16) will give:

gξ = fx (1 + f2y
) cosφdx− fxfy (fy cosφ− sinφ)dx

(1 + f2y
) dx

= fx
√

1 + f2y
or finally for the boundary condition on the wall:

tan(αc − π/2) = fx
√

1 + f2y
(3.17)
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The unit vector eF in the direction of the surface tension force can be also expressed inthe new coordinate system by:
eF = sinαc eξ − cosαc eζ

= 1
√

1 + g2ξ
ex + gξ

√

1 + g2ξ





−fy
√

1 + f2y
ey + 1

√

1 + f2y
ez




With:
1

√

1 + g2ξ
=

√ 1 + f2y
1 + f2y + f2x

gξ
√

1 + g2ξ
= fx

√

1 + f2y + f2x
one obtains:

eF =
(1 + f2y

) ex − fxfyey + fxez
√

(1 + f2y + f2x
) (1 + f2y

)

(3.18)

and the force due to the surface tension γ along a segment dl of the tpc-line is equal to:
dF[γ] = γdleF

= γ
√

(1 + f2y
)dy

(1 + f2y
) ex − fxfyey + fxez

√

(1 + f2y + f2x
) (1 + f2y

)

= γdy
(1 + f2y

) ex − fxfyey + fxez
√

1 + f2y + f2x
(3.19)

Let’s now consider a liquid column with cross section dxdy oriented along the z-axis which
crosses the liquid-liquid interface. Then the net force on that column due to surface
tension is:

dF[γ] = dF[x](x+ dx/2, y)− dF[x](x− dx/2, y)
+dF[y](x, y + dy/2)− dF[y](x, y − dy/2)

= ∂
(

dF[x](x, y)
)

∂x dx+ ∂
(

dF[y](x, y)
)

∂y dy

with

dF[x](x, y) = γdy
(1 + f2y

) ex − fxfyey + fxez
√

1 + f2y + f2x
dF[y](x, y) = γdx

(1 + f2x
) ey − fyfxex + fyez
√

1 + f2y + f2x
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Hence

dF[γ] = γdxdy









∂
∂x

[ (1+f2
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]
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(3.20)

or in components:

dF [γ]x = γdxdy




∂
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)

√

1 + f2y + f2x



+ ∂
∂y





−fyfx
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dF [γ]y = γdxdy
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dF [γ]z = γdxdy




∂
∂x





fx
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fy
√
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The force due to gravity and pressure on the column is equal to:
dF [p]z = −dxdy g∆ρ f(x, y)

so the force balance in vertical direction reads:
∂
∂x





fx
√

1 + f2y + f2x



+ ∂
∂y





fy
√

1 + f2y + f2x



 = g∆ρ
γ f(x, y) (3.21)

which is just the Young-Laplace equation in Carthesisan coordinates.

3.3.2 Cylinder geometry
Suppose the liquid-liquid interface contacts a solid cylinder with its axis oriented in the
z-direction, in the eϑ-ez plane, while the interface is described by:

z = f(r, ϑ)
The slope of the tpc-line along the cylinder is given by tanφ = ∂f/ (r∂ϑ) = fϑ/r. A
second orthogonal coordinate system is introduced to describe the contact angle and the
resulting surface tension force on the wall:

eξ = er
eη = cosφ eϑ + sinφ ez
eζ = − sinφ eϑ + cosφ ez

Again, eη has been chosen tangential to the tpc-line in point P (Figure 3.5).In this coordinate system the interface is described by
ζ = g(ξ, η)
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Figure 3.5: A sketch of the coordinate systems used to describe an arbitrary interface
meeting a cylinder. As before a) shows the cylinder while b) is a close look of the surface
element at position P . With grey color is shown the interface.

and the contact angle αc is given by
tan(αc − π/2) = ∂g/∂ξ = gξ

The unit vector in the direction of the surface tension force is expressed by:
eF = sinαc eξ − cosαc eζ

In order to express αc in the (r, ϑ, z) coordinates we compare the representation of dr in
both coordinate systems:

dr = dr er + rdϑ eϑ + (frdr + fϑdϑ) ez
= dr eξ + rdϑ (cosφ eη − sinφ eζ

)

+(frdr + fϑdϑ) (sinφ eη + cosφ eζ
)

= dr eξ + (rdϑ cosφ+ (frdr + fϑdϑ) sinφ) eη
+((frdr + fϑdϑ) cosφ− rdϑ sinφ) eζ

= dξ eξ + dη eη + dg eζ
Hence

dξ = dr
dη = rdϑ cosφ+ (frdr + fϑdϑ) sinφ
dg = (frdr + fϑdϑ) cosφ− rdϑ sinφ

From last equation we can calculate ∂g/∂ξ = gξ:
gξ =

(dg
dξ

)

dη=0
=

((frdr + fϑdϑ) cosφ− rdϑ sinφ
dr

)

dη=0
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Because dη = rdϑ cosφ+ (frdr + fϑdϑ) sinφ = 0 one obtains:
(r cosφ+ fϑ sinφ) dϑ = −fr sinφdr

dϑ = −fr sinφ
r cosφ+ fϑ sinφdr

= −frfϑ
r2 + f2ϑ dr

and
gξ = fr cosφ− (fϑ cosφ− r sinφ) frfϑ

r2 + f2ϑ (3.22)

= fr cosφ
(

1− (fϑ − r tanφ) fϑ
r2 + f2ϑ

)

= rfr
√r2 + f2ϑ

The unit vector eF now becomes:
eF = sinαc eξ − cosαc eζ

= 1
√

1 + g2ξ
er + gξ

√

1 + g2ξ

( −fϑ
√r2 + f2ϑ

eϑ + r
√r2 + f2ϑ

ez
)

With:
1

√

1 + g2ξ
=

√

r2 + f2ϑ
r2 + f2ϑ + r2f2r

gξ
√

1 + g2ξ
= rfr

√r2 + r2f2r + f2ϑ
one obtains:

eF =
(r2 + f2ϑ

) er − fϑrfreϑ + r2frez
√(r2 + f2ϑ + r2f2r ) (r2 + f2ϑ)

(3.23)

and the force due to the surface tension γ along a segment dl = √r2 + f2ϑdϑ of the tpc-lineis equal to:

dF[γ] = γdleF = γ
√

r2 + f2ϑdϑ
(r2 + f2ϑ

) er − fϑrfreϑ + r2frez
√(r2 + f2ϑ + r2f2r ) (r2 + f2ϑ)

= γdϑ
(r2 + f2ϑ

) er − fϑrfreϑ + r2frez
√r2 + f2ϑ + r2f2r

(3.24)

If one considers a cylinder with radius R immersed in the liquids, the interface slope near
the cylinder is related to the contact angle by Eq.(3.22):

cot(αc) = − tan(αc − π/2) = −r (∂ζ/∂r)
√

r2 + (∂ζ/∂ϑ)2

∣

∣

∣

∣

∣

∣

r=R
(3.25)
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3.3.3 Spherical geometry
Suppose the liquid-liquid interface contacts a solid sphere, in the eϑ-eβ plane, while theinterface, expressed in cylindrical coordinates (r, ϑ, z), is described by:

z = f(r, ϑ)
The interface near the sphere expressed in spherical coordinates (R,ϑ, β) is given by:

β = h(R,ϑ)
The slope of the tpc-line along the sphere is given by tanφ = (−Rdβ)/ (R sinβ∂ϑ) =−hϑ/ sinβ. A third orthogonal coordinate system is introduced to describe the contact
angle and the resulting surface tension force on the wall:

eξ = eR
eη = cosα eϑ − sinα eβ
eζ = − sinα eϑ − cosα eβ

while
eR = sinβer + cosβez
eϑ = eϑ
eβ = cosβer − sinβez

The coordinate systems are sketched in Figure 3.6.
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Figure 3.6: A sketch of the coordinate systems used to describe an arbitrary interface
meeting a sphere. As before a) shows the sphere while b) is a close look of the surface
element at position P . With grey color is shown the interface surface.
In the (ξ, η, ζ) coordinate system the interface is described by:

ζ = g(ξ, η)
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and the contact angle αc is given by
tan(αc − π/2) = ∂g/∂ξ = gξ

while the unit vector in the direction of the surface tension force is expressed by:
eF = sinαc eξ − cosαc eζ

In order to express αc in the r, ϑ, z coordinates we compare the representation of dr in
the three coordinate systems:

dr = dr er + rdϑ eϑ + dfez
= (dr sinβ + df cosβ) eR + rdϑ eϑ + (dr cosβ − df sinβ) eβ
= dReR +R sinβdϑ eϑ +Rdheβ
= dReR +R sinβdϑ (cosφeη − sinφeζ

)

−Rdh (sinφeη + cosφeζ
)

= dReR + (R sinβdϑ cosφ−Rdh sinφ) eη
+(−R sinβdϑ sinφ−Rdh cosφ) eζ

= dξ eξ + dη eη + dg eζ
Hence

dR = dr sinβ + df cosβ
R sinβdϑ = rdϑ

Rdh = dr cosβ − df sinβ
and

dξ = dR
dη = R sinβdϑ cosφ−Rdh sinφ
dg = −R sinβdϑ sinφ−Rdh cosφ

From last equation we can calculate ∂g/∂ξ = gξ:
gξ =

(dg
dξ

)

dη=0
=

(−R sinβdϑ sinφ−Rdh cosφ
dR

)

dη=0
Because dη = R sinβdϑ cosφ−Rdh sinφ = 0 one obtains:

sinβdϑ = hRdR tanφ+ hϑdϑ tanφ
(sinβ − hϑ tanφ)dϑ = hRdR tanφ

dϑ = hR tanφ
sinβ − hϑ tanφdR

and, with tanφ = −hϑ/ sinβ:
gξ = −R sinβdϑ sinφ−Rdh cosφ

dR
= cosφ

[−RhR − (R sinβ tanφ+Rhϑ) dϑdR
]

= −R sinβ hR
√

sin2 β + h2ϑ



40 Chapter 3

Next one has to express hR and hϑ in f(r, ϑ):
hR =

( dh
dR

)

dϑ=0

=
( dr cosβ − frdr sinβ − fϑdϑ sinβ
R (dr sinβ + frdr cosβ + fϑdϑ cosβ)

)

dϑ=0
= cosβ − fr sinβ

R (sinβ + fr cosβ)

hϑ =
(dh
dϑ

)

dR=0

=
(dr cosβ − frdr sinβ − fϑdϑ sinβ

Rdϑ
)

dR=0
Since dR = dr sinβ + frdr cosβ + fϑdϑ cosβ = 0 we get:

dr = −fϑ cosβ
sinβ + fr cosβdϑ

and
hϑ =

(dh
dϑ

)

dR=0
= −fϑ

R (sinβ + fr cosβ)
Hence the contact angle αc is related to ∂ζ/∂r and ∂ζ/∂ϑ according:

cot(αc) = − tan(αc − π/2) = −gξ (3.26)
= R sinβ hR

√

sin2 β + h2ϑ
= r (cosβ − fr sinβ)

√

r2 (sinβ + fr cosβ)2 + f2ϑ

3.4 Calculation of the interface shape around two par-
ticles

For particles not too close together the interface profile is just a sum of the profiles around
each particle at infinite separation. This is the so called linear superposition approxima-
tion or Nikolson approximation [1],[4]. The interface profile around two floating particles
in close proximity can still be written as linear combination of the profile functions for
isolated particles. The coefficients in the solution are determined by the boundary con-
ditions on the surface of the particles. The exact boundary conditions were received in
section 3.3.
The governing equation for the shape ζ(x, y) of the interface between two liquids as

it was shown (Eq. (3.21)) is given by:

∂
∂x









∂ζ/∂x
√

1+
(∂ζ
∂x
)2+

(∂ζ
∂y
)2









+ ∂
∂y









∂ζ/∂y
√

1+
(∂ζ
∂x
)2+

(∂ζ
∂y
)2









= g∆ρ
γ ζ
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If the slopes ∂ζ/∂x and ∂ζ/∂y are small, this differential equation reduces to the two
dimensional Helmholz equation:

∂2ζ
∂x2 + ∂2ζ

∂y2 = q2ζ

with q = √g∆ρ/γ the inverse capillary length. In dimensionless cylindrical coordinates
(we scale r and ζ on Rp), this reads:

1
r
∂
∂r (r

∂ζ
∂r ) +

1
r2

∂2ζ
∂ϑ2 = (qRp)2ζ (3.27)

The general solution of this linear differential equation is given by:

ζ(r, ϑ) =
∞
∑

m=0
[am cos(mϑ) + bm sin(mϑ)] Km(qRpr)

where Km(x) is the modified Bessel function of the second kind and order m.
If we consider one particle in the origin the solution should have cylindrical symmetry

and the only term that survives is the m = 0 term. The solution then coincide with
the one given by Eq.(3.10). Consider now two particles with radius R, one positioned
at (x, y) = (d/2, 0) and one at (x, y) = (−d/2, 0). The coordinate system is illustrated
in Figure 3.7. Now we can write the general solution as linear combination of the single
solutions:

ζ(x, y) =
∞
∑

m=0
cm [Km(qRp r) cos(mϑ) + Km(qRp r∗) cos(mϑ∗)] /Km(qRp) (3.28)

where
r =

√

(x− d/2)2 + y2
ϑ = arctan(y/ (x− d/2))
r∗ = √r2 + d2 + 2rd cosϑ
ϑ∗ = π − arctan(r sinϑ/ (r cosϑ+ d))

Here (r, ϑ) and (r∗, ϑ∗) are the cylindrical coordinates of position (x, y) with respect to
the first particle and the second particle. Note that the first and second term between
square brackets in Eq.(3.28) have the same coefficient cm. This is due to the symmetry
of the problem, i.e. ζ (x (r, ϑ) , y (r, ϑ)) = ζ (x (r∗, ϑ∗) , y (r∗, ϑ∗)).
The functions Km have been normalized on Km(qRp) for convenience such that their

values are of order one for r → Rp.The sin(mϑ) terms have been dropped because of
symmetry reasons. Since both r∗ and ϑ∗ are a function of r and ϑ, Eq.(3.28) can be
written as:

ζ(r, ϑ) =
∞
∑

m=0
cmZm(r, ϑ) (3.29)

where Zm(r, ϑ) has been defined as:
Zm(r, ϑ) = [Km(qR r) cos(mϑ) + Km(qR r∗(r, ϑ)) cos(mϑ∗(r, ϑ))] /Km(qR)
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Figure 3.7: The coordinate system used for the calculation of the interface profile for two
particles. The particles are presented in top view.

We are now looking for the specific solution that satisfies the boundary condition (see
Eq.(3.26)):

cot(αc) = r (cosβ − (∂ζ/∂r) sinβ)
√

r2 (sinβ + (∂ζ/∂r) cosβ)2 + (∂ζ/∂ϑ)2
at r = rc (3.30)

or ∂ζ/∂r = F (αc, β, ζϑ) at r = rc. From Eq.(3.30) it follows that the function F (αc, β, ∂ζ/∂ϑ)
is given by:

F = tanβ (1 + tan2αc)
tan2αctan2β − 1

±




(tan2αc (1 + tan2 β)
tan2αctan2β − 1

)2
+

(1 + tan2 β) (ζϑ/r)2
tan2 αc tan2 β − 1





1/2

= tanαc − tanβ
1 + tanαctanβ

+tanαc (1 + tan2β)
tan2αctan2β − 1



1−
√

1 +
(tan2 αc tan2 β − 1) (ζϑ/r)2

tan2 αc (1 + tan2 β)




≃ tanαc − tanβ
1 + tanαctanβ − (ζϑ/r)2

2 tanαc
where ζM is the dimensionless z-coordinate of the center of the particle. The contact lineis given by: r2c + (ζc − ζM )2 = 1 with ζc = ζ(rc, ϑ), and tan (β(ϑ)) = rc/ (ζc − ζM ). The
(−) sign has been used to obtain a physical realistic solution. On the other hand from
Eq. (3.29) it follows that:

∂ζ
∂r =

∞
∑

m=0
cm ∂

∂rZm(r, ϑ)
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Combining the expressions for the ∂ζ/∂r one receives:
∞
∑

m=0
cm ∂

∂r [Zm(r, ϑ)]rc(ϑ) = F (αc, β, ζϑ) (3.31)

with rc(ϑ) =
√

1− (ζc − ζM )2. Eq.(3.31) should be true for all values of ϑ. Hence we
write this equation as a Fourier expansion:

∑

m,k
cmQmk cos(kϑ) =

∑

k
Ak cos(kϑ) (3.32)

with the coefficients Qmk and Ak given by:
Qmk = 1

π (1 + δk0)
∫ 2π

0
∂
∂r [Zm(r, ϑ)]rc(ϑ) cos(kϑ)dϑ

Ak = 1
π (1 + δk0)

∫ 2π

0
F (αc, β, ∂ζ/∂ϑ) cos(kϑ)dϑ

Eq.(3.32) is true for all values of ϑ if:
∑

m
cmQmk = Ak

Note that the coefficients Qmk and Ak both depend on c0, .., cM , hence the problem is
not linear. To solve this set first we assume that the series cn converges to 0 for n → ∞,
so the series is cut off at n = M . Now the finite set can be solved by iteration because
the matrix Qmk is diagonal dominant. Because the monopole solution is given by:

Q00 = −qK1(qR sinβ)/K0(qR)
A0 = tanφc
c0 = A0/Q00 = − tanφcK0(qR)

qRK1(qR sinβ)
and

ckQkk = Ak − ∑

m�=k
cmQmk

a scheme to solve this set of equations, is given by:
1. Start
2. initiate for all k: c′k := δk0A0/Q00
3. for all k: ck := c′k
4. calculate for all k and n: Qnk(c0, .., cM ), Ak(c0, .., cM )
5. for all k: c′k :=

(

Ak −∑

n�=k cnQnk
)

/Qkk

6. if for any k: |c′k − ck| > ǫ go to step 3
7. Stop
Once knowing the coefficients c0, .., cM the interface profile is also known:

ζ(x, y) =
M
∑

n=0
cn [Kn(qRr) cos(nϑ) + Kn(qRr∗) cos(nϑ∗)] /Kn(qR)



44 Chapter 3

3.5 Calculation of the force between two particles
Let us consider the interactions between two spheres situated at an interface at a distance
d. As before the coordinate plane xy coincide with the flat interface far away from the
particles. The interface shape is described by ζ(x, y) and it is given by Eq. (3.28). Two
types of forces are exerted on each sphere: the interfacial tension force and the hydrostatic
pressure. The resultant of these forces in x-direction gives us the capillary interaction
force. Here it will be calculated by considering a large rectangular volume that surrounds
one of the spheres and has the middle plane between the spheres as a bounding surface,
see Figure 3.8. A similar approach was used in [5].

x

A D
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ξ=0

ξ=0

ξ=0
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B C
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y

ξ≠0

ξ=0
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Figure 3.8: Layout for the contour integration of the capillary force.
The size of the integration contour ABCD is large enough to ensure that AD, BC and

CD are lying in the regions where the interface is flat (ζ = 0). Only along the segment
AB the interface is not flat (ζ �= 0) and it is given by the function ζ (0, y) = ζ0y.The x-component of the force due to the hydrostatic pressure is given by:

F (p) = ex
∫

S
Pds

where S is the area of the plane zy between the y-axis and ζ0y curve and:
P = P0 − ρlgz at z < ζ0y
P = P0 − ρugz at z > ζ0y

Then in dimensionless form (we scale y and z on Rp) :

F (p) = R3p
∫ ∞

−∞

∫ ζ0y

0
(−ρlgz + ρugz)dzdy = −∆ρgR3p

∫ ∞

0
ζ20ydy (3.33)

The x-component of the interfacial tension acting along the contour ABSD is given by:

F (γ) = ex
∫

ABCD
γdl
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The integrals along the segments BC and DA cancel each other because of the sym-
metry of the system. The line segment dl can be expressed as: dl = √dy2 + dζ2 =
dy

√

1 + (dζ/dy)2. Consequently:

F (γ) = 2γRp
∫ ∞

0

( dl
dy − 1

)

dy = 2γRp
∫ ∞

0





√

1 +
(dζ
dy

)2 − 1


 (3.34)

where again scaling on Rp was used. Combining Eqs. (3.33) and (3.34) one will receive
the capillary force for two identical particles:

Fc = F (p) + F (γ) = 2γRp
∫ ∞

0





√

1 +
(dζ
dy

)2 − 1


dy +∆ρgR3p
∫ ∞

0
ζ20ydy

This expression can be simplified further by substituting
√

1 + (dζ/dy)2 ≈ 1+ 1
2 (dζ/dy)2

and g∆ρ = γq2:
Fc
γRp =

∫ ∞

0

(dζ0y
dy

)2
dy + (qRp)2

∫ ∞

0
ζ20ydy (3.35)

where ζ0y is given by (see Eq. 3.28):

ζ(0, y) =
M
∑

n=0
2 cnKn(qRr0y) cos(nϑ0y)/Kn(qR)

with r0y = r(0, y) and ϑ0y = ϑ(0, y).

3.6 Summary
In this chapter we considered a single particle trapped at an interface. The interface
deformation created by the particle is calculated from a set of equations. These are
obtained from the vertical force balance acting on the particle and from the interface
shape around the particle.
Moreover a theoretical expression was derived for the capillary force between two

spheres captured at the interface. The capillary force was calculated by integrating the
pressure and interfacial tension contribution over an arbitrary volume. An analytical
procedure was developed to solve the linearized Young-Laplace equation which describes
the interface shape. The linearization is valid as long as the interface slope is small.
The solution is expressed as a series of Bessel functions with coefficients determined by
the boundary condition for the contact angle at the particles surface. This approach is
appropriate for any distance between the particles thus it can describe the interactions
between particles in an aggregate.
The calculation of the interface profile and the interaction forces for a multiple particle

system can be done using a similar method as for the two particle case. It will be treated
in the next chapter.
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Chapter 4

Capillary forces between
spherical particles floating at a
liquid-liquid interface∗

Abstract
We study the capillary forces acting on sub-millimeter particles (0.02-0.6 mm) trapped at a

liquid-liquid interface due to gravity-induced interface deformations. An analytical procedure is
developed to solve the linearized capillary (Young-Laplace) equation and calculate the forces for
an arbitrary number of particles, allowing also for a background curvature of the interface. The
full solution is expressed in a series of Bessel functions with coefficients determined by the contact
angle at the particle surface. For sub-millimeter spherical particles, it is shown that the forces
calculated using the lowest order term of the full solution (linear superposition approximation;
LSA) are accurate to within a few percents. Consequently the many particle capillary force is
simply the sum of the isolated pair interactions. To test these theoretical results, we use video
microscopy to follow the motion of individual particles and pairs of interacting particles at a
liquid-liquid interface with a slight macroscopic background curvature. Particle velocities are
determined by the balance of capillary forces and viscous drag. The measured velocities (and
thus the capillary forces) are well described by the LSA solution with a single fitting parameter.

4.1 Introduction
In many cases, one observes the formation of aggregates of particles at a liquid interface
due to attractive capillary forces. Capillary forces appear whenever the particles distort
the liquid interface. The resulting self-assembly of particles has various industrial ap-
plications (e.g., enhanced oil recovery, waste water treatment, paint coatings [1], food
products [2], or ore flotation [3], etc.). New important applications include the use in
nanotechnology [4] and in modeling of processes in biological systems [5, 6]. For a review
about the importance of the self-assembly in different areas, one can see [7].
Theoretically, determining the strength of interaction forces between bodies at an in-

terface requires solving the Young-Laplace equation, which describes the interface shape.
∗This chapter has been published in Langmuir 2005, 21, 11190.
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This equation is a second order nonlinear differential equation that can be solved nu-
merically [8]. Analytical solutions can only be obtained for highly symmetric situations
or using approximations. The most common approximation is the linearization of the
Young-Laplace equation, valid when the interface slope is small. The first to derive an
analytical expression for the capillary force in the present context, was Nicolson [9], for
two floating bubbles. He expressed the interface profile as a sum of the profiles around
the isolated bubbles, the so-called linear superposition approximation (LSA). Chan and
coworkers [10] showed that the error introduced by using the linear Young-Laplace equa-
tion is small for small particles (small Bond numbers) and extended the use of the LSA
to floating cylinders and spheres. The LSA is not valid for large interface slopes and very
small distances between particles (where the boundary conditions are violated [9, 10, 11]).
A number of studies on the capillary interactions between different bodies has been

done by Kralchevsky and coworkers (see references [11, 12] for an overview). They calcu-
lated the exact force for two cylinders and spheres numerically and compared it with the
approximated formula. It was concluded that for short distances between the particles
the approximated formula underestimates the force considerably. In the case of floating
spheres they calculate the interaction by replacing the spheres with equivalent cylinders
[13]. As we will show, this approximation leads to a violation of the boundary conditions
and thus to erroneous results.
More complex boundary conditions were recently considered in studies [14, 15, 16]

examining the interactions between micrometer- and nanometer-sized particles with an
undulated contact line in the absence of gravity. The meniscus shape is expressed as a
multipole expansion in analogy with methods used in electrostatics. The leading term
considered is the quadrupole—quadrupole interaction.
To our knowledge, there are few experimental studies of the capillary force between

freely floating spherical particles. Velev and coworkers [17] measured the equilibrium dis-
tance between a floating particle and a vertical wall as a function of the wall immersion
and compared their result with theoretical calculations. In a similar experiment Petkov
and coworkers [18] determined the drag coefficient of sub-millimeter particles at the liquid
interface by measuring the velocity of the particles under the action of capillary forces.
The capillary force was varied by changing the position of the vertical wall. Joseph and
coworkers [19] investigate the rate of approach of two particles at a liquid interface. The
aggregation kinetics between many particles at an interface was studied by Vincze and
coworkers [20], who examined the dynamic development of cluster structure. In the exper-
iments of Velev and coworkers [21] and Dushkin and coworkers [22] the particles vertical
positions at the interface were defined by attachment to some holder. The capillary force
measured thus originated from the wettabilty rather than the weight of the particles.
In this study we concentrate on the capillary interactions between two or more sub-

millimeter spherical particles trapped at an interface. Multiple particle interactions have
not been studied extensively, despite the fact that in the case of aggregates they should
be very important.
The final goal of our research, which will be discussed in a future publication, is to

study aggregates trapped at an interface between two liquids [23]. The behavior of such
aggregates in shear flow is a function of the hydrodynamic and capillary interactions
between the particles that form the aggregate.
In the present paper we describe a method for calculating the capillary forces be-

tween multiple objects, cylinders or spheres, at a liquid-liquid interface with a certain
background profile. For this purpose we solve the linearized non- homogeneous Young-
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Laplace equation analytically using a series of modified Bessel functions. The coefficients
of this series are determined by considering the exact boundary conditions on the objects.
This approach results in robust and accurate scheme for the force calculation even for
small distances between the objects. We also present experimental data for the motion of
one spherical particle and a pair of interacting particles floating at a liquid liquid-interface
with a curved background profile. The force calculations are compared with the exper-
imental results, which confirm the validity of the model. Moreover we can determine
the drag force on the particles which is modified due to the presence of the interface.
The paper is organized as follows: the calculation of the capillary forces is explained in
Sec.4.2, we describe the experimental set-up and procedures in Sec. 4.3 and the results
are presented and discussed in Sec. 4.4. The paper ends in Sec. 4.5 with our conclusions,
while some mathematical aspects of the theory are described in three appendices.

4.2 Force calculation
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Figure 4.1: A sketch of a single particle at the interface. Rp is the radius of the particle,
αc is the contact angle, β0 the central cone angle, rc the radius of the tpc-line, φc the
slope of the interface at the tpc-line, ζc the z coordinate of the tpc-line and ζM the
z coordinate of the center of the particle and ζ∞ the height of the interface where the
interface deformation is zero.

In this section we discuss the calculation of the gravity-induced capillary force on a
particle floating at a liquid-liquid interface due to the presence of other particles. The
influence of each particle on the interface shape is represented by a series of singular solu-
tions of the governing linearized differential equation, with the singularities located at the
center of the particle considered. The full interface profile is described by a linear combi-
nation of these solutions. The coefficients are determined from the boundary condition on
the particle: the contact angle of the interface with the particle surface is constant. The
influence of a background profile due to a container, can be taken into account by another
series of singular solutions. By doing so one obtains an analytical solution for the interface
profile where the coefficients, representing the strength of the individual contributions,
can be calculated numerically. Given an interface profile, the capillary force on each parti-
cle can be calculated by integrating the surface tension along the three-phase-contact-line
(tpc-line) around the particle and the pressure over the particle surface.
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4.2.1 Particles at a liquid-liquid interface
The interface between two liquids on which the particles are floating, can be described
with z = ζ(x, y), where x and y are the axes in the horizontal plane and z-axis is oriented
vertical upwards. The basic system of a single particle at the interface is illustrated in
Figure 4.1. To calculate this profile one has to in general solve the Young-Laplace equation
[24]:

∂
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∂ζ/∂x
√
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∂x

)2+
(∂ζ
∂y

)2+
∂
∂y

∂ζ/∂y
√

1+
( ∂ζ
∂x

)2+
( ∂ζ
∂y

)2

= g∆ρ
γ (ζ − ζ∞)

(4.1)

where γ is the interfacial tension between the two liquids, ∆ρ = ρl − ρu is the densitydifference between the lower and upper liquid, g is the acceleration due to gravity and ζ∞is the height of the interface in regions where the curvature of the interface is zero.
When the buoyancy and gravity forces on the particles are considerably smaller than the
maximum interfacial tension force, (i.e. if 4/3πR3pg(ρp − ρl) ≪ 2πRpγ), the interface
slope ∇ζ near the particles is very small. Here Rp is the radius of the particle and ρpis its density. For our experimental parameters, listed in Table 4.1, this condition holds
becauseRp ≪ 2 mm. Therefore one can reduce Eq.(4.1) to the two-dimensional Helmholtz
equation, which in cylindrical coordinates becomes:

1
r
∂
∂r

(

r∂ζ∂r
)

+ 1
r2

∂2ζ
∂ϑ2 = q2 (ζ − ζ∞) (4.2)

where q = √g∆ρ/γ is the inverse capillary length. In the following we define ζ∞ = 0 as
indicated in Figure 4.1. The general solution of this linear differential equation is obtained
by using separation of variables [25]:

ζ(r, ϑ) =
∞
∑

m=0
(amIm(qr) + bmKm(qr)) cos(mϑ)
+ (4.3)

∞
∑

m=0
(cmIm(qr) + dmKm(qr)) sin(mϑ)

where Im(x) and Km(x) are modified Bessel functions of the first and second kinds, both
of order m. The coefficients am, bm, cm and dm are determined from the boundary
conditions. In the simplest case of one particle at the origin, the solution has cylindrical
symmetry (m = 0) and must decay to zero for r ≫ Rp. In this case the only term
that remains in the solution is the K0 term. However, for N particles, with the ith
particle positioned at (xi, yi), the general solution can be written as a linear combination
of singular solutions located at the particle positions:

ζ(x, y) =
N
∑

i=1

∞
∑

m=−∞
c(i)mQm(ri, ϑi) (4.4)
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with:
Q−m(r, ϑ) = Km(qr)

Km(qRp) sin(mϑ)

Q0(r, ϑ) = K0(qr)
K0(qRp)

Qm(r, ϑ) = Km(qr)
Km(qRp) cos(mϑ)

where m > 0. Here (ri, ϑi) are the cylindrical coordinates of the position (x, y) with
respect to particle i: ri = ((x− xi)2 + (y − yi)2)1/2 and ϑi = arctan((y − yi) / (x− xi)).
The functions Qm(r, ϑ) have been normalized for convenience such that their values are of
order one for r −→ Rp. The coefficients c(i)m in Eq.(4.4) are determined by the boundary
condition on the particles (see Figure 4.2 and Appendix 4B for the full derivation).

4.2.2 Background profile
In general the interface profile due to the container (the background profile) is not flat
because the contact angle at the tpc-line along the walls differs from π/2. The background
profile ζ∞ for a circular container (i.e. a Petri dish) is given by:

ζ∞(r) = [∂ζ∞/∂r]ref
q I1(qrref) I0(qr) (4.5)

where the center of the container is located at r = 0 and rref is some reference position
as indicated in Figure 4.3. Eq.(4.5) can be obtained from Eq.(4.3) using the appropriate
boundary conditions at r = 0 and r = rref and is only valid if (∂ζ∞/∂r)2 ≪ 1. For
practical reasons the slope is not determined at the wall of the container but at rref close
to the wall. Since I0 is an increasing function with increasing r, one can state that if
[∂ζ∞/∂r]2ref ≪ 1, this condition is fulfilled for r ≤ rref .
Taking into account the background profile, the general solution of Eq.(4.2) is given

by:
ζ(x, y) =

∞
∑

m=−∞

(

c(0)m Pm(r, ϑ) +
N
∑

i=1
c(i)mQm(ri, ϑi)

)

(4.6)
with:

P−m(r, ϑ) = Im(qr)
Im(qrref) sin(mϑ)

P0(r, ϑ) = I0(qr)
I0(qrref)

Pm(r, ϑ) = Im(qr)
Im(qrref) cos(mϑ)

where m > 0. Here (r, ϑ) are the coordinates of the position (x, y) with respect to
the center of the dish: r = (x2 + y2)1/2 and ϑ = arctan(y/x). The functions Pm(r, ϑ)
have been normalized for convenience. The coefficients c(i)m are now determined from the
boundary conditions on the particles and on the walls of the container. This involves
several mathematical steps which are further explained in Appendix 4A, where the slope
of the interface at the tpc-line, [∂ζ/∂rj ] at rj = rtpc(ϑj), is related to the contact angle
αc.
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4.2.3 Capillary force on a particle
To calculate the total capillary force on a particle it is convenient to integrate the surface
tension along the tpc-line and the pressure over the particle surface. The contribution of
the interfacial tension along the tpc-line is given by (see Eq.(4.30) from Appendix 4C):

F[γ] = γ
∫ 2π

0
dl eF dϑ (4.7)

where eF is the unit vector in the interface normal to the tpc-line as sketched in Figure4.2. This unit vector can be expressed in the Cartesian unit vectors:

eF = nx(ϑ)ex + ny(ϑ)ey + nz(ϑ)ez

where the functions nα(ϑ), α ∈ {x, y, z}, as well as dl are given in Appendix 4C by
Eqs.(4.27) and (4.29).
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Figure 4.2: A sketch of the coordinate systems used to describe the relation between the
slope ∇ζ of the interface near the tpc-line and the contact angle αc at a point P . The
tpc-line is along the eη vector, the gray surface represents the interface.

The contribution of the pressure distribution over the particle surface is :

F[p] = −∫ 2π

0

∫ π

0
p(χ, ϑ)R2peR sinχdχdϑ

where p(χ, ϑ) = p0+gRp ρ (zM + cosχ) with p0 a reference pressure, zM the z-coordinate
of the center of the particle and ρ = ρu for 0 < χ < β(ϑ) and ρ = ρl for β(ϑ) < χ < π, χ
being the azimuth with respect to the z-axis. Expressed in components one obtains for
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the pressure contribution to the force:
F [p]x

g∆ρR3p
=
∫ 2π

0
(1
2zM [sinβ cosβ − β]− 1

3 sin3 β
) cosϑdϑ

F [p]y
g∆ρR3p

=
∫ 2π

0
(1
2zM [sinβ cosβ − β]− 1

3 sin3 β
) sinϑdϑ

F [p]z
g∆ρR3p

=
∫ 2π

0
(1
3 cos3 β − 1

2zM sin2 β) dϑ+ 2π (ρu + ρl)
3∆ρ

The net capillary force on the particle is given by:
F[cap] =

(

F [γ]x + F [p]x
)

ex +
(

F [γ]y + F [p]y
)

ey (4.8)
The sum of the z components of the force can be used as a check on the particle weight.
Summarizing, we obtain the capillary force acting on a particle floating in an ensemble

of particles at a liquid-liquid interface by calculating the interface profile ζ(x, y) using
Eq.(4.6). The coefficients c(i)m in this equation are determined as described in Appendix
4B. Once knowing ζ(x, y) the capillary force on a particle can be calculated by integrating
the pressure distribution over its surface and the interfacial tension along its tpc-line, as
described above and in Appendix 4A. Details of the actual force calculation have been
given in Appendix 4C.

4.2.4 The LSA
In the Linear Superposition Approximation (LSA) only the zero order Bessel contributions
of the particles to the interface profile are taken into account. In this approximation the
expression for the capillary force on the ith particle due to the presence of the jth particle
reduces to [13, 15]:

F[i,j]
lsa = −2πγ Q2p qK1(qrij) r̂ij (4.9)

where r̂ij is the unit vector along the center to center line pointing from particle j to
particle i and rij is the center to center distance between the particles. The coefficient
Qp is defined as

Qp = − tan(αc − βo)
qK1(qRp sinβo) (4.10)

where rc = Rp sinβo is the radius of the circle formed by the tpc-line for a single particleand αc the contact angle of the particle. In practice we have tan(αc − βo) ≪ 1 and
qRp sinβo ≪ 1, such that tan(αc − βo) ≃ sin(αc − βo) and K1(x) ≃ 1/x. This leads to
Qp = −Rp sinβo sin(αc − βo), an expression used previously by others [11, 12].The expression for the capillary force on the particle due to the background profile
using the LSA reduces to a simple form, too :

F[bg]
lsa = 2πγ QpQd q I1(qr) r̂ (4.11)

where Qp has been given above and:

Qd = [∂ζ∞/∂r]rref
q I1(qrref) (4.12)



54 Chapter 4

A similar idea for the force calculation between a wall and a particle was considered by
Chan and coworkers [10]. The net capillary force on particle i within the LSA is expressed
as:

F[i]
lsa = 2πγ qQp[Qd I1(qri) r̂i −Qp

∑

j �=i
K1(qrij) r̂ij ] (4.13)

The validity of the LSA will be evaluated below by comparing with the full model, i.e.
Eq.(4.8) versus Eq.(4.13).

4.3 Experimental
4.3.1 Materials
The experimental system consists of two immiscible liquids layered on top of each other
with spherical particles suspended at the interface. The liquid phases used were pentade-
cane (Acros organics) and a water-salt-glycerol mixture. 35 wt.% glycerol (Merck) was
added to deionized water to match the viscosity of the pentadecane (2.34 mPas). The
viscosity match aids in estimating the drag force on the particles at the interface. 0.15
M NaCl (Merck) was added to the water phase to suppress possible electrostatic effects.
Glass particles (Tamson) with an average radius of 320 µm were used. The interfacial
tension and the densities of the experimental system are listed in Table 4.1.

This study System of Paunov
and coworkers

Rp 317 10 µm
ρl 1090 1000 kg/m3
ρu 773 0 kg/m3
ρp 2900 3000 kg/m3
γ 0.044 0.072 N/m
αc 40 30, 60, 90 deg

qRp 0.0843 0.0037 -
Table 4.1: Properties of the particle-fluid systems used by us and by Paunov et al. [13].

Rp is the particle radius, ρl, ρu, ρp are the densities of the lower phase, upper phase and
the particle, respectively. γ is the interfacial tension, αc is the contact angle and q is the
inverse capillary length.

4.3.2 Experimental setup and procedure
The experimental setup is illustrated in Figure 4.3. It consists of a glass Petri dish
(diameter 85 mm) placed upon a horizontal anti-vibration table. The two liquid phases
are immiscible and naturally layer due to the density difference. The dish is covered with
a transparent plastic lid with a small hole through which we deposit the particles at the
interface (about 32 mm from the center of the dish). A microscope (Olympus SZX9)
with a CCD camera is mounted above the vessel and connected to an image acquisition
system, to record the motion of the particles at the interface.
The measurement protocol used is described below. The two liquids are left to equi-

librate in the dish for one hour. At this point, a single glass particle is deposited at the
interface and it moves towards the middle of the dish due to the curvature of the interface.
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Figure 4.3: Schematic layout of the experimental setup.

When the particle reaches its equilibrium position near the center of the dish, a second
particle is deposited at the interface, at the same initial position as the first. It also moves
towards the center and interacts with the first particle. The motion of both particles has
been recorded. The experiments are repeated eight times in order to check reproducibil-
ity and to collect statistically significant data. From the acquired images the coordinates
(xni , yni ) of the nth particle are extracted as a function of the time ti. These coordi-
nates are used to calculate the radial distance from the center of the dish rni , the distancebetween the two particles di and their average velocities vni+1/2 =

(rni+1 − rni
) / (ti+1 − ti).

For time scales larger than to = (4/3πρpR3p
) / (6πηRp) ≃ 25 ms the inertia of the

particles is negligible. In this case the capillary interaction force balances the drag force
and can therefore be calculated by applying Stokes drag law:

Fd = −6πηRp fd v. (4.14)
A correction coefficient fd was introduced to account for the presence of the interface.
The presence of the interface breaks the symmetry of the flow pattern around the particle,
leading to an increased drag. When the equator plane of the particle coincides with the
interface one expects fd = 1 [26]. In our experiments we suppose fd to be of order unity,
but larger than one. The trajectory of the first particle is used to map out the influence of
the interaction with the background profile. The two-particle interaction can be singled
out from this background influence.

4.3.3 Profile near a single particle
In order to describe the vertical position of the particles with respect to the interface
we require a value for the contact angle of the liquid-liquid interface with the particle
surface. This contact angle has been measured by pouring the oil and the water phases
into a square cuvette (Starna Gmbh). The fluids were left to equilibrate for one hour.
A single glass particle was deposited at the interface and after another hour images of
the particle were recorded from the side with the microscope and the CCD camera. A
typical example of such an image is shown in Figure 4.4. From the captured pictures, the
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Figure 4.4: The distortion of the interface caused by the particle. The symbols are
the experimental data (after substracting the background profile), and the line represents
the theoretical solution. Inset: An image of a glass particle at the glycerol solution-
pentadecane interface in a cuvette.

equilibrium contact angle was determined to be αc = 40 ± 4o. Given the contact angle
one can calculate also the radius rc of the tpc-line and the angle βo by considering theforce balance on the particle and the interface profile near the particle (similar to the
approach used in [27]).
Further image analysis provided the interface profile near the particle. By subtraction

of the background profile (the interface without the particle) we obtain the deformation of
the interface due to the particle. This profile was compared with the theoretical solution
(see Sec. 4.2), ζ(r) = QpK0(qr). As can be observed from Figure 4.4, the calculated
curve is in good agreement with the experimental results.
Previous researchers [28, 29] have shown the presence of an electrostatic force at the

liquid-liquid interface that is transmitted through the oil phase. The electrostatic effects
in the water phase were suppressed by the addition of salt. Such an electrodipping force,
as stated in [28], will push the particle further into the water phase. We compared the
theoretical value of Qp (−8.9 µm from Eq.(4.10)) with the value from the best fit to the
data in Figure 4.4: −9.7 ± 1.5 µm and conclude that this possible electrostatic force is
not significant for the capillary interactions in our system.

4.3.4 Background profile

The undisturbed interface profile was determined independently from an additional
experiment using light refraction from the interface [30, 31]. The Petri dish was completely
filled such that the upper phase contacts the cover glass. This prevents the appearance
of a second free interface (oil/air). A vertical narrow laser beam (He-Ne) crosses the
liquid-liquid interface at a radial position rref approximately 35 mm from the center of
the dish. The refracted beam, see Figure 4.5, travels about 1.65 m through the air
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Figure 4.5: Schematic representation of the path of the light beam defining the symbols
used in the calculation of L(θ1). The refraction from the glass cover is negligible and not
shown for simplicity.

before it reaches a screen. The resulting light spot is shifted a distance L from the
reference position, i.e. the position of the light spot when the dish is empty. Using
Snell’s law (n3 sin θ3 = n2 sin(θ1 − θ2) and n2 sin θ2 = n1 sin θ1) we express the distance
L = h3 sin θ3 + h2 sin θ2 in the interface slope tan θ1 at rref . The symbols θ1, θ2, θ3, and
h2, h3 are defined in Figure 4.5; n1 = 1.38, n2 = 1.43 and n3 = 1.00 are the refractive
indices of water, pentadecane and air, respectively. To obtain an error estimate, the
experiments were repeated six times with different Petri dishes. The average measured
displacement is L = 15 ± 5 mm and the corresponding angle of the interface at rref is
θ1 = 10± 4o.
Knowing the interface slope at this position allows us to calculate the whole profile

using Eq.(4.5), which is valid when the slope is small. Here [∂ζ∞/∂r]2ref = tan2(θ1) ≃ 0.03
and therefore the interface is well described by Eq.(4.5) for r ≤ rref .
4.4 Results and Discussion
4.4.1 Calculations
To begin with we consider the capillary interaction between a pair of particles. As dis-
cussed in Sec. 4.2 the influence of the second particle on the interface profile near the
first particle has been expressed by higher order Bessel contributions, see Eq.(4.4). The
coefficients of these contributions are determined by the boundary condition along the
three-phase contact line around the particle, where the contact angle is supposed to be
constant.

To examine the influence of the higher order Bessel contributions to the profile, the
deviation of the contact angle αc(ϑ) from the input value α0 for two touching particles
has been plotted in Figure 4.6 as a function of the angular coordinate ϑ, defined in the
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Figure 4.6: The calculated deviation of the contact angle αc from the input value α0 = 40o
as a function of the angular coordinate ϑ, for the experimentally investigated system.
Shown are the results obtained by using the LSA (M = 0) and the curves for M = 1, 2,
4 and 8.

inset. The properties of our experimental system, listed in Table 4.1, were used in these
calculations. The result for the linear superposition approximation (M = 0) has been
shown together with the results for M = 1, 2, 4 and 8. Here M is the number of higher
order Bessel contributions taken into account. As can be seen from the graph, including
just the first order contribution hardly improves the solution. The solution requiresM ≥ 4
in order to correctly match the boundary condition. The coefficients c(i)m converge to zero
fairly rapidly which trend is obvious from the listed values for c(1)m and c(2)m in Table 4.2,
for M = 8 and d/Rp = 2. Only the coefficients with positive m values have been listed
because these represent the cos(mϑ) contributions. Due to the axial symmetry in the
two-particle problem, all sin(mϑ) contributions (negative m values) have to be zero. We
observe from the graph that even for the lowest order the deviations from the right contact
angle α0 are smaller than 1o. Given our knowledge of αc = 40± 4o this is negligible.

m c(1)+m/c(1)0 c(2)+m/c(1)0

1 -0.00401129 0.00401129
2 0.00261464 0.00261456
3 -0.00051941 0.00051939
4 0.00009941 0.00009940
5 -0.00001940 0.00001940
6 0.00000388 0.00000388
7 -0.00000079 0.00000079
8 0.00000016 0.00000016

Table 4.2: The values for c(i)+m scaled by c(1)0 = −6.4897µm for two particles in contact.
We compared our method with the method of Paunov and coworkers [13] based on

energy minimization. We calculated the capillary force between two particles for the
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same situation as they considered. The parameters of their system are given in Table 4.1.
They model the spherical particles as cylinders oriented perpendicular to the undisturbed
interface (see the inset in Figure 4.7a).
The relative difference, F/Flsa, between the full calculation, F (d), and the LSA calcu-

lation, Flsa(d) was calculated as a function of the interparticle distance d, for two cases.
First a constant interface slope at the approximated tpc-line was assumed, as if the par-
ticles have a cylindrical shape. The results have been plotted in Figure 4.7a. In the
second case αc was fully matched at the correct tpc-line. These results are shown in
Figure 4.7b. By comparing both figures one observes that due to the simplification of
the boundary conditions, the higher order Bessel contributions are strongly overestimated
in Figure 4.7a. With the correct boundary condition (Figure 4.7b) the deviation from
the LSA at contact, d/Rp = 2, is only 0.3, 3.6 and 10.4 % for αc = 30, 60 and 90o,
respectively. Hence, for all practical applications one can use the LSA for these systems
when αc � 60o. By comparing Figure 4.7a with Figure 2 of [13] one observes that our
results confirm exactly the results of Paunov and coworkers, if one assumes the cylindrical
approximation. However the right solution for spherical particles has been depicted in
Figure 4.7b.
The results for our experimental conditions are also presented in Figure 4.7. One

should note that the error introduced by using the LSA at small interparticle separations
is less than 2 %, if the correct boundary conditions are used, as can be observed from
Figure 4.7b. Hence, although the exact solution converges more slowly to the LSA at
large distances than for the situation of [13], the approximation is useful even for small
distances between the spherical particles.
Although in Figure 4.7a the force between our particles converges in the same way to

the LSA approximation as for Paunov’s system, this is not the case in Figure 4.7b. We
think this is due to the weight of the particles. When the spherical boundary conditions
are applied, during the separation of the particles the vertical position of the particles
has to be corrected in order to obey the force balance in vertical direction. Therefore the
higher order contributions to the disturbance of the interface between the two particles
decays more slowly and so the interaction force. This effect is the stronger the heavier
the particles. When cylindrical boundary conditions are applied this effect does not occur
since the cylinders can not be adjusted in vertical direction. We checked this explanation
by reducing the size (and so the weight) of our particles to that of Paunov’s particles and
by increasing the size of Paunov’s particles that of ours. In both cases the difference in
convergence, when using spherical boundary conditions, disappeared.
The proposed method is also well suited to calculate the capillary force between cylin-

ders or hairs at a liquid-liquid interface (e.g. the hairs on a plant leaf [5]). In this case
the LSA is not sufficient, as can be concluded from the 90o curve in Figure 4.7a. The
full solution at contact is about a factor of four larger than the LSA solution, and a full
analysis is necessary.
In Figure 4.8 a cluster of eight particles is considered. The net capillary force on

each of the eight particles is indicated by an arrow originating from the center of the
particle. The difference between the full and the LSA solution is less than a few percent
for all particles and not visible on the scale of the graph. Within this limit the capillary
interaction for many particles is pair-additive. The bar in the upper left corner indicates
that the forces on the particles are typically on the order of 50 nN. The arrow on the
central particle points exactly to the particle which has no symmetrical counter particle
(the outer right particle), a consequence of the fact that the net force on each particle is
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Figure 4.7: Plot of the ratio of the exact force and the LSA force, F/Flsa, as a function
of the interparticle distance d/Rp, for the system of ref. [13], with αc = 30, 60 and 90o,
and our system with αc = 40o; in (a) the calculations were done using the cylindrical
boundary condition, in (b) using the spherical boundary condition.

simply the sum of all pair interactions.

4.4.2 Experimental results
• A single particle
When a single particle is placed at the interface, it starts to move towards the center

of the dish along an approximately straight line. The radial velocity of the particle is
shown in Figure 4.9 for 8 independent experiments.
The particle velocities are higher in the initial stages (at larger r values) and gradually

diminish to zero when the particle reaches the center of the dish. This is due to the
capillary interaction with the background profile. By comparing the measured velocity
with the theoretical prediction, Eq.(4.14), we obtain the correction coefficient fd. The
interaction between the particle and the background profile F[bg]

lsa is given by Eq.(4.11).
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50 nN

Figure 4.8: The calculated interactions between particles in a stationary 8-particle aggre-
gate. The arrows indicate the net force on the particles. The difference between the LSA
and the exact solution is less than 2 % and is not visible on this scale.

Combining both equations one obtains the following expression:

v(r) = −γQpQd q I1(qr)
3η Rp fd (4.15)

where Qp and Qd have been defined in Eqs.(4.10) and (4.12), respectively.
The curve in Figure 4.9 represents Eq.(4.15), which contains only one unknown pa-

rameter, fd. We find fd = 1.4 ± 0.5, which is of the same order of magnitude as our
estimate in Sec. 4.3. The uncertainty in fd is mainly due to the inaccuracy of the mea-
sured background slope at the reference point: θ1 = 10± 4◦, which affects the accuracy
of Qd.

• Interacting particles
When a second particle is introduced, it will also move towards the center of the dish.

However, instead of going to zero as the particle nears the center (and the first particle),
the velocity increases when the particle approaches the middle of the dish. Initially
the particle shows the same behavior as the first particle due to the background force.
However, for distances smaller than half of the dish radius the attractive interaction force
with the other particle, F[1,2]

lsa , becomes dominant and the velocity increases rapidly. InFigure 4.10 the relative velocity vrel = v1 − v2 has been plotted as a function of the
distance d between the two particles, again for a series of 8 independent measurements.
To explain the observed dependence of vrel on d, the forces acting on both particles are
considered:

F[1]
d = F[bg]

lsa (r1) + F[1,2]
lsa (d) (4.16)

F[2]
d = F[bg]

lsa (r2) + F[2,1]
lsa (d) (4.17)

where d = r1 − r2 and F[bg]
lsa is again the background force, Eq.(4.11). The capillary

interaction force F[1,2]
lsa (d) between the two particles in the LSA is given by Eq.(4.9). Fdis the drag force on particle 1 or 2, respectively.
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Figure 4.9: The measured velocity v(r) of a single particle in a Petri dish as a function
of the radial distance r from the center of the dish. The different symbols represent 8
different measurements. The curve is the best fit of Eq.(4.15) resulting in fd = 1.4± 0.5.
The inset shows the corresponding force as a function of r, on a log-log scale.

When the particles are moving towards each other, they also interacts hydrodynami-
cally; the drag force on the first particle depends not only on its own velocity but also on
that of the second particle. Since the particles approach each other along a center line of
the Petri dish, the problem is one dimensional and the velocities of particles 1 and 2 are
given by [1]:

6πηRp fd v1 = A11(d)F [1]
d +A12(d)F [2]

d
6πηRp fd v2 = A21(d)F [1]

d +A22(d)F [2]
d

where Aij(d) are the hydrodynamic mobility functions along the line of centers. For equal
sized particles symmetry arguments show that A11 = A22 and A12 = A21. Moreover
limx→∞Aij(x) = δij where δij = 1 if i = j and δij = 0 otherwise. Taking the difference of
the last two equations and using Eqs.(4.16) and (4.17) one obtains the relative velocity
vrel = v1 − v2:

vrel = G
(2F [1,2]

lsa (d) + F [bg]
lsa (r1)− F [bg]

lsa (r2)
6πηRp fd

)

where G = A11 − A12. Since dF [dish]
lsa /dr ≪ F [1,2]

lsa (d)/d near the center of the dish, the
contribution of the background force can be neglected and the following expression for
the relative velocity as a function of the interparticle distance is obtained:

vrel = 2γ Q2p qK1(qd)
3ηRpfd G(d) (4.18)

where Eq.(4.9) has been used for the interparticle force. The function G(d) was tabulated
by Batchelor [32]. An interpolation formula for these tabulated data that shows the
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Figure 4.10: The measured velocity vrel as a function of the interparticle distance d be-
tween two particles in a Petri dish. The different symbols represent 8 different measure-
ments. The black curve is the best fit of Eq.(4.18) resulting in fd = 1.2 ± 0.2. The
dashed curves represent the error bounds on this fit. The inset shows the corresponding
inter-particle force as a function of r, on a log-log scale.

correct asymptotic behavior for both x → 2 and x → ∞ is given by:

G(x) = 1− 3
2x−1 + x−3 − 15

4 x−4 − 4.46
1000 (x− 1.7)−2.867

with x = d/Rp. The curve in Figure 4.10 represents Eq.(4.18). Again, there is only a
single unknown parameter, fd, which is used as a fitting parameter. The best fit is been
obtained for fd = 1.2 ± 0.2, which is in agreement with the value found from the fit in
Figure 4.9. The uncertainty of 0.2 is mainly due to the spread of the experimental data
points.
We received similar fd values for a single particle and two interacting particles. This

was expected because we use the same particles and liquid phases in both experiments.
According to [33], the drag on a particle at a liquid-liquid interface is a function of the
viscosity of the two liquids and the three phase contact angle only. Hence we expected
the agreement between the two experiments.
In our case fd is slightly bigger than one. Petkov and coworkers [18] report values

of fd for the water-air interface. Depending on the contact angle they measured drag
coefficients between 0.54 and 0.68 for glass particles. Drag coefficients larger than unity
were received when surfactant was added (fd = 1.6) or heavier copper beads were used
(fd = 1.77). Danov and coworkers [34] developed a theory for the drag of a solid sphere
moving at spherical or flat interface for Stokes flow. They compute numerically the
translational drag force and hydrodynamic torque acting on a particle as a function of
the particle position at the liquid-liquid interface for several viscosity ratio’s and viscous
or nonviscous interfaces. The friction coefficient received by us (viscosity ratio of one) is
in agreement with their theory (see Figure 5 in [34]).
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4.5 Conclusions
We are able to calculate the capillary interactions between several objects at a liquid-liquid
interface. The proposed approach is universal and can be used to describe the interactions
between a particle and a larger aggregate or to describe the interaction between a particle
and cylindrical walls, as in a Couette device. The only restriction is that the interface
curvature in the region of interest should be small. In Sec.4.2.1 we showed that for
submillimeter-sized particles the disturbance to a flat interface due to the presence of
particles causes a slope |∇ζ| ≪ 1. The slope of the background profile due to the geometry
of the container can be larger than one. However, because the particles will collect in a
region of low curvature, the gradient ∇ζ in this region is also small. This restriction is
therefore not a severe limitation of the method for the considered systems.
In our calculations we considered spheres as well as cylinders at a liquid-liquid in-

terface. For two cylinders at small separations the Linear Superposition Approximation,
LSA, strongly underestimates the capillary force, and one should use the full calculation
as described in Sec. 4.2. With this method capillary problems can be addressed like
the wetting of hairy plant tissues [5], where the wetting is controlled by the capillary
interactions between the hairs and their deformation.
However, for spheres it was shown that the LSA can be used, even at very small sepa-

rations between the particles. It introduces a small error, less than 2 %, but considerably
lowers the computational efforts. The method is well suited to describe many particle
capillary interaction. Because the LSA holds for spherical particles, this interaction is
simply pair wise additive.
The theoretical results for one sphere and a pair of spheres at an interface with back-

ground curvature are corroborated by our experimental results as shown in Figures 4.9
and 4.10. The capillary force on a particle at the liquid-liquid interface was estimated
by measuring the particle velocities, taking into account the non-negligible hydrodynamic
interaction between the approaching particles. The best value for the fitting parameter in
the expression for the drag force is fd = 1.2± 0.2. This indicates that the presence of the
liquid-liquid interface enhances the drag force on the particles only slightly. This value
for fd is in agreement with the value calculated by Danov et al.[34] for similar conditions
as ours.
The experimental method is restricted to non-colloidal particles because negligible

thermal motion of the particles is required to obtain reproducible results. Moreover, very
small distances between the particles cannot be probed due to the limitations of the optical
microscopy technique. On the other hand, the experimental procedure is simple and does
not require any attachment of the particles which could influence their position at the
interface. This simple approach can be used also for measuring the capillary interactions
between multiple particles.
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Appendix 4A. Interface slope at the tpc-line
In the derivation given in Sec.4.2 the liquid-liquid interface is described in cylindrical
coordinates (r, ϑ, z) by z = f(r, ϑ). However, to describe the tpc-line along a particle,
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the interface near that spherical particle can be expressed most conveniently in spherical
coordinates (R,ϑ, β) as β = h(R,ϑ). The slope of the tpc-line along the sphere with
respect to the horizontal plane is given by tanφ = (−Rdβ)/ (R sinβdϑ) = −hϑ/ sinβ,
where hϑ = ∂h/∂ϑ. A third orthogonal coordinate system is introduced to describe the
contact angle and the resulting surface tension force on the wall at a certain point P on
the tpc-line, see also Figure 4.2:

eξ = eReη = cosφ eϑ − sinφ eβeζ = − sinφ eϑ − cosφ eβ
eR = sinβer + cosβezeϑ = eϑeβ = cosβer − sinβez

In the (ξ, η, ζ) coordinate system the interface is described by ζ = g(ξ, η), where at the
point P the η-axis is parallel to both the liquid-liquid interface and the spherical surface
while the ξ-axis (ζ-axis) is normal (parallel) to the spherical surface. In this geometry
the contact angle αc is defined by

tan(αc − π/2) = ∂g/∂ξ = gξ
while the unit vector in the interface perpendicular to the tpc-line is given by:

eF = sinαc eξ − cosαc eζ (4.19)
This unit vector points in the direction of the surface tension force. In order to express
αc in the r, ϑ, z coordinates we compare the representation of dr in the three coordinate
systems:

dr = dr er + rdϑ eϑ + dfez
= dReR +R sinβdϑ eϑ +Rdheβ
= dξ eξ + dη eη + dg eζ

By expressing (er, eϑ, ez) in
(eR, eϑ, eβ

) and (eR, eϑ, eβ
) in (eξ, eη, eζ

) one obtains:
dR = dr sinβ + df cosβ
R sinβdϑ = rdϑ
Rdh = dr cosβ − df sinβ
dξ = dR
dη = R sinβdϑ cosφ−Rdh sinφ
dg = −R sinβdϑ sinφ−Rdh cosφ

From the last equation one can calculate ∂g/∂ξ = gξ:

gξ =
(−R sinβdϑ sinφ−Rdh cosφ

dR
)

dη=0
Because dη = R sinβdϑ cosφ−Rdh sinφ = 0 one obtains:

dϑ = hR tanφ
sinβ − hϑ tanφdR
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and, with tanφ = −hϑ/ sinβ:
gξ = −R sinβdϑ sinφ−Rdh cosφ

dR
= −R sinβ hR

√

sin2 β + h2ϑ
Next one has to express hR and hϑ in f(r, ϑ):

hR =
( dh
dR

)

dϑ=0
= cosβ − fr sinβ

R (sinβ + fr cosβ)
hϑ =

(dh
dϑ

)

dR=0
= −fϑ

R (sinβ + fr cosβ)
Hence the contact angle αc is related to ∂ζ/∂r and ∂ζ/∂ϑ according to the relation:

cot(αc) = cosβ − fr sinβ
√

(sinβ + fr cosβ)2 + (fϑ/r)2
(4.20)

Appendix 4B. Calculation of c(i)m
The coefficients c(i)m can be determined from the boundary conditions on the particles. The
liquid-liquid interface should contact the particle in such a way that the contact angle αc
is constant along the tpc-line. In Eq.(4.20) αc has been expressed in the interface slope,
where β(ϑ) = arctan (rc/ (ζc − ζM)) and rc is defined by r2c +(ζc − ζM )2 = Rp; ζM is thez-coordinate of the center of the particle:

zM = 1
2π

∫ 2π

0
ζ (RP sinβ0, ϑ) dϑ−RP cosβ0 (4.21)

where β0 and ζc = ζ(rc, ϑ) are given in Figure 4.1. One therefore has to consider the
slope fr = ∂ζ/∂r at the surface of the particle. Again under the assumption that the
spatial derivatives of ζ(r, ϑ) are small, it follows from Eq.(4.20) that:

( ∂ζ
∂rj

)

r(j)c

= tanαc − tanβj
1 + tanαc tanβj − (fϑ/r)2j

2 tanαc
and also:

( ∂ζ
∂rj

)

r(j)c

=
∞
∑

m=−∞

(

c(0)m
[∂Pm(r, ϑ)

∂rj
]

r(j)c

+
N
∑

i=1
c(i)m

[∂Qm(ri, ϑi)
∂rj

]

r(j)c

)

(4.22)

From the boundary condition on the rim of the dish we obtain:
(∂ζ
∂r

)

rref
=

∞
∑

m=−∞

(

c(0)m
[∂Pm(r, ϑ)

∂rj
]

rref
+

N
∑

i=1
c(i)m

[∂Qm(ri, ϑi)
∂rj

]

rref

)

(4.23)

In Eqs.(4.22) and (4.23) both the left and right hand sides are functions of ϑj ; therefore
the coordinates (ri, ϑi) should be expressed in rj and ϑj where rj = rc(ϑj). To compare



Capillary forces between particles at an interface 67

the ϑj dependence of the left and right hand sides of these equations, they have been
expanded in a Fourier series:

A(j)
0 +

∞
∑

k=1

[

A(j)
k cos(kϑj) + A(j)

−k sin(kϑj)
]

(4.24)

=
N
∑

i=0

∞
∑

m=−∞
c(i)m

(

B(i,j)
m,0 +

∞
∑

k=1

[

B(i,j)
m,k cos(kϑj) +B(i,j)

m,−k sin(kϑj)
]

)

where for j > 0:
A(j)
k = 1

π
∫ 2π

0

( ∂ζ
∂rj

)

r(j)c

H(k, ϑ) dϑ
with H(k, ϑ) = cos(kϑ) for k > 0, H(k, ϑ) = 1/2 for k = 0 and H(k, ϑ) = sin(−kϑ) for
k < 0. The coefficients B(i,j)

m,k are defined by:

B(i,j)
m,k = 1

π
∫ 2π

0

[∂Qm(ri, ϑi)
∂rj

]

r(j)c

H(k, ϑ)dϑ

for i > 0. Moreover:
A(0)
k = δk0

(∂ζ
∂r

)

rref

B(0,j)
m,k = 1

π
∫ 2π

0

[∂Pm(r, ϑ)
∂rj

]

r(j)c

H(k, ϑj)dϑj

with δk0 = 1 if k = 0 and δk0 = 0 otherwise. Both sides of Eq.(4.24) are identical if all
the individual cos(kϑj) and sin(kϑj) terms in the summation are identical, which results
in a set of equations for the unknowns c(i)m :

N
∑

i=0

M
∑

m=−M
c(i)mB(i,j)

m,k = A(j)
k (4.25)

where we have assumed that the series c(i)±m converge to 0 for m ≫ 1 and the summation
can be stopped at m = M . Note that the coefficients A(j)

k and B(i,j)
m,k (weakly) depend

on the coefficients c(i)m via the calculation of rj = rc(ϑj), hence the problem is not linear.
The set of Eqs.(4.25) can be solved iteratively because B(j,j)

k,k ≥ B(i,j)
m,k for all i, j, m andk. Since the monopole solution is given by:

c(0)k (mp) = δk0 tanφbgI0(qrdish)
q I1(qrdish)

c(j)k (mp) = δk0 − tanφcK0(qRp)
qK1(qr(o)c )

these values are used as starting values. The updating step is constructed from:
c(j)k B(j,j)

k,k = A(j)
k −∑

i�=j

∑

m
c(i)mB(i,j)

m,k − ∑

m�=k
c(j)m B(j,j)

m,k
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Because the coefficients A(j)
k and B(i,j)

m,k depend on c(i)m these coefficients should be recal-
culated before every updating step. Now the calculation scheme is complete and reads as
follows: 1. Start

2. Initiate for all j and k : c∗(j)k := c(j)k (mp)
3. For all j and k : c(j)k := c∗(j)k
4. Calculate for all i, j, k andm : A(j)

k and B(i,j)
m,k5. For all j and k :

c∗(j)k =
A(j)
k − ∑

i,m
c(i)m B(i,j)

m,k (1− δijδmk)
B(j,j)
k,k

6. If for any j and k :
∣

∣

∣c∗(j)k − c(j)k
∣

∣

∣ > ǫ go to step 3.
7. Stop

Although the algorithm works fine it becomes more efficient, without significant loss of
numerical accuracy, when the slope ∂ζ/∂r is evaluated not at the actual tpc-line r(j)c (ϑ),
but at a fixed radius r(o)c = Rp sinβ0, by applying a Taylor expansion. In this case the
coefficients B(i,j)

m,k become independent of the coefficients c(i)m and have to be calculated
only once.

Appendix 4C. Calculation of F[cap]

To obtain an expression for the interfacial tension force on a spherical particle, one has
to evaluate Eq.(4.19)

eF = sinαc eR + cosαc (sinφ eϑ + cosφ eβ
) (4.26)

with
sinφ = fϑ/r

√

(sinβ + fr cosβ)2 + (fϑ/r)2

cosφ = sinβ + fr cosβ
√

(sinβ + fr cosβ)2 + (fϑ/r)2

Evaluating Eq.(4.26) one obtains:
eF = nx(ϑ)ex + ny(ϑ)ey + nz(ϑ)ez

with
nx(ϑ) = sinαc sinβ cosϑ− cosαc (sinφ sinϑ+ cosφ cosβ cosϑ)
ny(ϑ) = sinαc sinβ sinϑ (4.27)

+ cosαc (sinφ cosϑ+ cosφ cosβ sinϑ)
nz(ϑ) = sinαc cosβ − cosαc cosφ sinβ
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where β (ϑ) can be expressed in terms of fr and fϑ:

tanβ = tan2 αc − 1
2 (fϑ/r)2 − fr tanαc

tanαc
(

1 + 1
2 (fϑ/r)2 + fr tanαc

) (4.28)

Moreover the infinitesimal length dl is given by:
dl = (R sinβ dϑ) / (cosφ) (4.29)

so that the force contribution dF[γ] is given by:

dF[γ] = γdl eF = γR sinβ
cosφ eF dϑ (4.30)

Integrating this equation over ϑ yields the net surface tension force F[γ] on the particle
with radius R.
The contribution of the pressure distribution over the particle surface is :

F[p] = −∫ 2π

0

∫ π

0
p(χ, ϑ)R2peR sinχdχdϑ

where p(χ, ϑ) = p0+gRp ρ (zM + cosχ) with p0 a reference pressure, zM the z-coordinate
of the center of the particle and ρ = ρu for 0 < χ < β(ϑ) and ρ = ρl for β(ϑ) < χ < π,
χ being the azimuth with respect to the z-axis. The tpc-line along the particle is defined
by β(ϑ) as given in Eq.(4.28). The value for zM in this expression is obtained from
Eq.(4.21). Finally the capillary force is obtained from:

F[cap] =
∫ 2π

0
γR sinβ
cosφ eF dϑ+F[p]

This force has been calculated numerically using an integration algorithm based on a
Gaussian quadrature. All the programming was done in C using the lcc-win32 package
(free available and described by Jacob Navia, Q Software Solutions GmbH).
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Chapter 5

Restructuring and break-up of
two-dimensional aggregates in
shear flow∗

Abstract
We consider single two-dimensional aggregates, containing glass particles, placed at a wa-

ter/air interface. We have investigated the critical shear rate for break-up of aggregates with
different sizes in a simple shear flow. All aggregates break-up nearly at the same shear rate (1.8± 0.2 s−1) independent of their size. The evolution of the aggregate structure before break-up
was also investigated. With increasing shear rate the aggregates adopt a more circular shape,
and the particles order in a more dense, hexagonal structure. A simple theoretical model was
developed to explain the experimental observed break-up. In the model the aggregate is con-
sidered as solid circular disk that will break near its diameter. The capillary and drag force on
the two parts of the aggregate were calculated and from this force balance the critical shear rate
was found. The model shows a weak size dependence of the critical shear rate for the considered
aggregates. This is consistent with the experimental observations.

5.1 Introduction
In many disperse systems with practical importance (paints, dairy products) we observe
the formation of aggregates of particles [1, 2]. Aggregate behavior is also an important
issue in many solid-liquid separation processes as mineral processing or waste water treat-
ment [3, 4], where one has to deal with both colloidal and non-colloidal particles. Another
area of application is the use of particles (organized in 2D structures) as stabilizing agents
of foams and emulsions (known as Pickering emulsions) encountered in many industrial
and natural processes such as food, cosmetic and pharmaceutical products. To improve
the properties of these products or the efficiency of these processes one needs a detailed
knowledge of the behavior and properties of the aggregates involved. The behavior of an
aggregate in shear flow is a complex phenomenon. The aggregate may deform, restructure
or break-up. Our goal is to find the relationship between the aggregate changes and the
shear flow. We are studying aggregates confined at a liquid-air interface. Their motion in

∗This chapter has been published in Langmuir 2006, 22, 4959.
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vertical direction is strongly restricted, thus they can be considered as two-dimensional
(2D). These 2D aggregates are used as a model for three-dimensional (3D) suspensions,
because they are more convenient for investigation. They can easily be observed and
analyzed with conventional techniques.
When a 3D aggregate is subjected to a shear flow the hydrodynamic stresses acting

on its surface may cause break-up of the aggregate if they exceed the attraction forces
between the particles. Two general break-up mechanisms have been identified: ”erosion”
and ”rupture”. Erosion consists of shearing off single particles or small fragments from
the aggregate surface while rupture means breaking of the aggregate in two or more large
parts. It is believed that different forces are responsible for the two mechanisms. The
erosion is caused by the shear force of the fluid on the surface of the aggregate. It is a
slow process and dominates at moderate stresses. Rupture occurs when the hydrodynamic
stress exceed the cohesive force and is assumed to be caused by the pressure difference
inside the aggregate [5, 6].
In the 3D break-up models proposed in literature the flocs are described by two limiting

cases, a solid impermeable sphere [7] or a uniform porous sphere [8]. Bagster and Tomi
[7] calculated that for a homogeneous impermeable sphere the rupture occurs on a plane
trough the center of the sphere while the critical shear rate does not depend on its size. In
another simple model the aggregate has been considered as two rigid spheres [9]. Blaser
calculated the break-up forces assuming that the flocs behave as solid ellipsoids [10, 11].
These theories were complemented by a vast amount of computer simulations studying

different aspects of the aggregate behavior [12, 13, 14, 15]. Most of the simulations predict
an aggregate densification with increasing shear flow. However, for strong shearing forces
the simulations of Doi and Chen [15] showed a reduction of the coordination number and
no densification.
Experimentally, the restructuring and break-up of aggregates was studied in [16, 17,

18, 19, 20, 21, 22]. Hoekstra and coworkers [16] investigated 2D systems with both a
strongly attractive potential (rigid bonds between the particles) and a weakly attractive
potential in which the particles can still slide over each other in an extensional flow. For
both systems the shear flow causes anisotropy in the aggregate structure. To probe this
anisotropy the Fourier transforms of the aggregate images were studied. The evolution of
the coordination number as a function of the applied shear flow indicated a densification
of the rigid flocs. Break-up was found to occur at the weakest link in the aggregate (at
a single contact between the particles) and erosion was not observed. When surfactant
was added to the system, no densification was seen. Hansen and coworkers [17] studied
2D colloidal aggregation in a Couette cell. The cluster size and structure was followed
varying the shear rate. The weakly aggregated systems showed rearrangement into a
more compact structure and a densification with increasing shear rate while the strongly
aggregated systems did not display a significant change in structure. Stancik investigated
the effect of shear [18] and elongational flow [19] on the structure of a monolayer of
particles at a water/oil interface. The lattice structure was observed to pass from a
hexagonal array through a liquid-like state, at start-up of the flow, to a semi-ordered
state during steady flow. Aveyard [20, 21] also studied monolayers of particles at an
interface when compressed in a Langmuir trough. At the water/air interface the particles
were packed in a hexagonal array while at the water/oil interface they went through a
transition from a hexagonal to a rhombohedral structure. The monolayer collapses by
folding and corrugation when the surface pressure equals the interfacial tension, but the
particles did not migrate from the interface under the compression. In the work of Yeung
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and Pelton [22] a micro-mechanical technique was used to pull apart 3D single flocs. They
showed that the floc strength does not depend on its size. The break up mechanism was
dependent on the aggregate structure. A compact floc tended to break by surface erosion
while more open flocs were broken into equal fragments. Blaser [10] considered flocs in
shear and elongational flow. He found that in simple shear flow the flocs rotate as solid
ellipsoids and were bent more than stretched. In contrary in elongational flow the flocs
do not rotate and are aligned and stretched along the extensional axis.
In this paper we present experimental results for aggregate restructuring and break-up

in simple shear flow and compare them with a simple model for solid body break-up. We
investigate single 2D aggregates ranging in size between 20 and 400 particles, at relatively
low shear rates using video microscopy. From the recorded microscopic images we extract
the coordinates of the particles which are used to characterize the structural changes of
the aggregate as a function of the applied shear rate. The critical shear rate for break-up
is measured too. The aggregates all break at nearly the same shear rate independent of
their size. The experimental findings are compared with a simple theoretical model. In
this model a force balance between the external hydrodynamic forces due to the shear
flow and the internal forces due to capillary interactions is formulated. From this balance
the critical shear rate for break-up can be predicted. The aggregate can be considered
as solid as long as no significant rearrangement of particles occurs. The capillary force
stems from the deformation of the w/a interface around the particles. We consider the
multiple particle capillary force as pair wise additive in agreement with our recent findings
[23]. The external hydrodynamic force is assumed to be given by the drag force acting
on every particle which for creeping flow is given by the Stokes formula. For simplicity it
was assumed that the aggregate will break in two nearly equal parts.
The paper is organized as follows. In section 5.2 the experimental setup and procedures

are presented. In section 5.3 the experimental results are discussed and compared with
model calculations. The paper ends with some conclusions.

5.2 Materials and Methods
5.2.1 Materials
All experiments were conducted with spherical glass particles trapped at a liquid-air
interface. The liquid phase was a mixture of water and glycerol (35 wt. % , Merck) with
a density of 1090 kg/m3, viscosity 2.34 mPas and surface tension of 71 mN/m. The glass
particles (Polysciences Inc, with a radius Rp = 115 ± 10µm, density 2480 kg/m3) were
small enough to be trapped at the water-air (w/a) interface. The contact angle of the
particles at the w/a interface was determined to be 55o ± 2.5o.

5.2.2 Experimental Setup and Procedure
The experimental setup is illustrated in Figure 5.1. It consists of a Couette device with
two concentric cylinders (Ri = 24 mm, Ro = 45 mm) that can be rotated in opposite
directions. This creates a controlled shear flow, with a stagnant zone at a controllable
radial position, in the gap between the cylinders when a liquid is inserted.
Thin stainless steel rings were attached to the cylinders to create a pinning edge for

the liquid-air interface. The flatness of the interface was controlled by adding or removing
liquid and measured from the refraction of a laser beam at the interface, as explained in
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[23]. During the course of a single experiment water is slowly evaporating, causing the
interface to curve slightly. However, this does not influence our experiments significantly.
The interface is illuminated through the transparent bottom of the outer cylinder, while
it is observed from above using a CCD camera equipped with a zoom lens. The camera
was connected to an image acquisition system.
By adding particles to the w/a interface, an aggregate was formed spontaneously due

to the strong capillary attraction between the particles. In principle it is possible to keep
the aggregate in the stagnant zone and so in the field of view of the camera. However,
the aggregate will stay on the same spot only if the total shear forces on all the particles
cancel each other. When the aggregate rotates a little bit, due to the irregular shape
of the aggregate, the shear forces change. Hence, in order to keep the aggregate at the
same place, the rotational speed of the cylinders should be adjusted continuously, which
in practice is not possible due to the relatively slow response of the flow field to the
cylinder speeds. This was observed by other researchers [17], too. Instead the aggregate
is allowed to rotate slowly in the Couette device. The CCD camera is kept stationary
and the aggregate is recorded when it passes the field of view. The rotational speed of
the cylinders is set to minimize the velocity of the aggregate.
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Figure 5.1: a) The experimental set-up. b) The simple shear flow profile in the gap with
the used coordinate system.

Given the angular velocities of the two cylinders, the shear rate γ̇ at a radial distance
r can be calculated using [24]:

γ̇ = 2R2iR2o
(R2o −R2i ) (ωi − ωo) r−2
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where ωi and ωo are the angular velocities and Ri and Ro the radii of the inner and outer
cylinder, respectively. A disadvantage of the wide gap geometry is the variation of the
shear rate with distance r. For large aggregates the maximum relative variation of the
shear rate inside an aggregate at the stagnant zone is given by:

∆γ̇
γ̇ =

∣

∣

∣

∣

D
γ̇
dγ̇
dr

∣

∣

∣

∣

= 2D
r0

where D is the diameter of the aggregate and r0 the position of the stagnant zone. For a
typical aggregate considered in this paper (2 mm diameter) the variation of the shear rate
is about 10 % over the whole aggregate. The inertia of the aggregate can be neglected
for the speeds applied.
The measuring protocol was as follows: after the formation of the aggregate it was

sheared for 10 minutes at a fixed shear rate, starting at 0.1 s−1, while images of the
aggregate were captured. This time span was long enough to reach a steady state. After
10 minutes the shear rate was increased in steps of 0.10 s−1 and again kept constant during
10 minutes. The highest applied shear rate was 2.5 s−1; enough to observe break-up of
the aggregate.

5.2.3 Aggregate characterization
From the captured images the number and the coordinates of the particles inside the
aggregate were determined using image processing software from Optimas. These coordi-
nates were used for calculating several aggregate characteristics: aspect ratio, tilt angle
with respect to the flow direction, coordination number, translational and orientational
order. Below a short description of each of these characteristics is given.

⋆ Aspect ratio L/B: the aggregate shape was described as an ellipse with a semi-
major axis L and a semiminor axis B. L/B has been calculated from the particle positions
inside the aggregate [10, 25]:

L
B =

√

√

√

√

√

〈x2〉+ 〈y2〉+√

(〈x2〉 − 〈y2〉)2 + 4 〈xy〉2
〈x2〉+ 〈y2〉 −√

(〈x2〉 − 〈y2〉)2 + 4 〈xy〉2 (5.1)

where < x2 >, < y2 > and < xy > are the second order central moments:
〈x2〉 = 1

N
N
∑

i=1
(xi − 〈x〉)2 〈y2〉 = 1

N
N
∑

i=1
(yi − 〈y〉)2

〈xy〉 = 1
N

N
∑

i=1
(xi − 〈x〉) (yi − 〈y〉)

N is the total number of particles in the aggregate and (xi, yi) the position of particle i
inside the aggregate, while:

〈x〉 = 1
N

N
∑

i=1
xi and 〈y〉 = 1

N
N
∑

i=1
yi
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⋆ Tilt angle θ: the angle of the long axis of the aggregate with respect to the flow
direction was calculated again using the second order moments [10, 25]:

θ = 1
2 tan−1

( 2 〈xy〉〈x2〉 − 〈y2〉
)

(5.2)

By probing the tilt angle as a function of time, the rotation of the aggregate in the shear
flow can be investigated.

⋆ The average coordination number Co is given by the average number of near-
est neighbors per particle. A particle is considered a nearest neighbor when it is closer
than first minimum in the pair correlation function g(r) (in our case the first minimum
is around 0.3 mm). A description of g(r) is given in the next paragraph. The maximum
average coordination number for an infinite 2D system is 6 (hexagonal close packing). For
finite aggregates however the end effects will reduce the maximum attainable coordina-
tion number. In order to compensate for these effects in our aggregates, i.e. in order to
be able to compare the coordination number of aggregates with different sizes, the mea-
sured coordination numbers were normalized on the theoretically calculated maximum
coordination number for the same number of particles Comax(N):

Co = 6 Comeas (N)
Comax(N) (5.3)

Comax(N) corresponds to a perfect hexagonal packing of disks with equal size. In Appen-
dix 5A is explained how Comax has been calculated.

⋆ For further characterization of the structure the pair correlation function, g(r)
was used. g(r) is defined as [24, 26]:

g(r) = 〈n(r)〉
n (5.4)

where n(r) is the local density of particles at distance r from the reference particle and n is
the average density of the aggregate (calculated as n = N/ (πLB)). The pair correlation
function g(r) is usually used to characterize infinite areas covered with particles and do
not extend into an empty area outside the aggregate. In these cases g(r) will approach 1
for r → ∞ values. In our case due to the finite aggregate size the g(r) value will approach
0 for large r values. The finite size of our aggregates will also influence the magnitude
of the peaks in g(r). To minimize these finite size effects, only particles lying in a circle
with radius B/2 from the center of the aggregate are considered in g(r).

⋆ Another parameter to describe the structure inside the aggregate is the six fold
symmetry complex order parameter ψ6 [26]:

ψn6 = 1
z

z
∑

k=1
exp(6iφnk)

where z is the number of nearest neighbors of particle n and φnk is the angle betweenthe bond between particle n and k and the x-axis. ψ6 is similar to the coordinationnumber in that it is maximal (equal to 1) for perfect hexagonal packing. We need this
parameter to calculate the orientational correlation function g6(r) which is given below.
The orientational correlation function includes the information about the bond angles as
calculated in ψ6, but in addition it correlates the orientation of the crystal structure at
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different positions inside the aggregate. It is maximal (equal to 1) when all the bonds
are under 60o or multiples of 60o angles and the orientation of the crystal structure is
everywhere the same:

g6(r) =
〈

(ψ06
)∗ ψ6

〉

(r)
g(r) (5.5)

where ψ06 is the parameter value of the central particle and the star denotes the complexconjugate. The averaging is done over all particles in a shell with a radius between r and
r+ dr around the central particle. The function g6(r) was calculated as explained in the
Appendix of [26] for all particles contained in the aggregate because, contrary to g(r),
g6(r) is not influenced by finite size effects.

⋆ Moreover, the Fourier transform of the 2D images was determined using the
"ImageJ" software package. These Fourier images exhibit additional information on
anisotropy and orientational order within the aggregates.

5.3 Results and Discussion
In this section the experimental results will be discussed. First the behavior of the ag-
gregate will be described globally. Next, we look in more detail at the structure of the
aggregate as a function of the rate of shear. Finally the experimental results for break-up
will be compared with model calculations.

5.3.1 General Observations
Figure 5.2 reveals a sequence of images representing the general behavior of the aggregates
at the applied shear rate. In Figure 5.2a the initial shape of an aggregate has been shown
before starting the shear flow. This shape is preserved at low shear rates. With increasing
shear rate the aggregate adopts a more circular shape and the ordering of the particles
increases (Figure 5.2b and 5.2c). At a certain shear rate the hydrodynamic force starts
to erode small parts and single particles from the rim of the aggregate (Figure 5.2d) and
eventually at higher shear rates the aggregate will break-up (Figure 5.2e and 5.2f).

5.3.2 Structure Characterization
Below we present a more quantitative description of the structure of the aggregate as a
function of the applied shear rate. We are interested in the evolution of the aggregate
before break-up occurs. Thus the shear rates considered are less than 1.7 s−1.
As explained in Section 5.2.3 the aspect ratio L/B is measure of the aggregate shape

(for a circle L/B = 1). In Figure 5.3 the aspect ratio of several aggregates as calculated
from the particle positions (xi, yi) using Eq. (5.1) has been shown as a function of the
shear rate.
Initial ellipsoidal shapes gradually transform to a more circular shape whereas initial

circular shapes stay circular. This is to be expected since the aggregate is rotating in
the simple shear flow. Particles on the outside of the aggregate on the long, semimajor
axis will experience the largest shear force and will be moved to sides of the aggregate
which experience a lower shear force, i.e. the short, semiminor axis. The end result is
a circular aggregate shape. In extensional flow other researchers found stretching of the
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Figure 5.2: Images of a typical aggregate at several successive shear rates- a)the initial
state, b) γ̇ = 1.4 s−1, c) γ̇ = 1.7 s−1, d) γ̇ = 1.8 s−1, e) γ̇ = 1.9 s−1 and f) γ̇ = 2.0 s−1
(initially N = 409).

aggregates [10, 16]. Thus the circular shape is characteristic for simple shear flow, in
which the aggregate rotates.
The upper curve in Figure 5.3 suggest that for some cases a frictional yield force

prevents the particles from sliding over each other at low shear rates.
In Figure 5.4 the average coordination number Co, calculated according Eq.(5.3) as

explained Section 5.2.3, has been presented as a function of the applied shear rate. As
one can see, the coordination number increases with increasing shear rate and comes close
to 6, which corresponds to a hexagonal packing.
Why do the particles not immediately form a perfect hexagonal (Co = 6) circular

(L/B = 1) aggregate at the initial stage? After all it is energetically the most favorable
configuration. It is known that dense 2D systems tend to arrange into hexagonal order.
If the particles would be able to slide along each other without any friction, it is expected
that this perfect hexagonal structure would appear from the beginning. However, our
aggregates at the initial stage, as are the aggregates at a specific shear rate, are stable.
Our hypothesis is that there is some kind of friction force which prevents them from
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Figure 5.3: The aspect ratio as a function of the applied shear rate. The measured values
are given by the symbols, the lines are to guide the eye. The black circles correspond to
N = 409, the squares to N = 189, the stars to N = 203 and the triangles to N = 285.

further restructuring. This friction could be caused by the roughness of the particles. A
particle cannot move if the sum of the external forces (capillary and drag force) is smaller
than the static friction force. With increasing shear flow, more and more particles will
experience external forces larger than the static friction force and will thus be able to slide
along each other. Eventually, at sufficient shear rates, all particles will be able to slide
and a perfect hexagonal aggregate will form. A similar increase in coordination number
with increasing shear rate has been observed in [16].
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Figure 5.4: The average coordination number as a function of the applied shear rate. The
measured values are given by the symbols, the line is a guide to the eye. As before the
black circles correspond to N = 409, the stars to N = 203, the triangles to N = 285 and
the diamonds to N = 191.
It is interesting to notice that there is a slight optimum in the coordination number

around a shear rate of γ̇ = 1.5 s−1. Similar effect is also observed in Figure 5.3 where there
is a maximum in L/B again at 1.5 s−1. The critical shear rate for break-up is around 1.8
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s−1. Apparently, just before break-up of the aggregate, the shear forces become strong
enough not only to overcome the barrier for sliding but also to break bonds between
particles completely which leads to a deformation of the aggregate. The optimum in the
curves in Figures 5.3 and 5.4 are a first indication of the onset for the break-up. The
coordination number provides information only on the first shell of neighbor particles
around the particle of interest. To investigate the presence of long range order the pair
correlation function, g(r) was calculated. g(r) is defined as the probability of finding a
particle at a position a distance r from another particle divided by the probability of
finding a particle at that position irrespective of all other particle positions. So for r→ ∞, g(r) → 1.
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Figure 5.5: Average g(r) characteristic for different shear rates: the initial state (black
dashed line), γ̇ = 1.0±0.1 s−1 (grey line) and γ̇ = 1.5±0.2 s−1 (solid line). The curves
are averaged over 4 experiments with N = 191, 203, 285 and 409, respectively.

Figure 5.5 shows g(r) as determined using Eq.(5.4) for three stages: the initial, at
1.0 ± 0.1 s−1 and 1.5 ± 0.2 s−1. The shown results have been obtained by averaging
over four independent experiments. The oscillatory behavior that g(r) show in our case
implies that there is enhanced probability of finding particles at certain distances. The
position of the 1st maximum in the figure indicates that the particles are nearly close
packed. It is at about twice the particle radius. The order is preserved in the next shells
too. However, there does not seem to be a significant difference in peak height at different
shear rates. It can be seen though that the next peaks are getting more distinctive with
increasing the shear rate hinting a small increase in the orientational order. As explained
in Section 5.2 to prevent the end effects g(r) was calculated only for the particles in the
inner part of the aggregate. Thus we loose the long range order where more pronounced
differences with the applied shear flow are expected.
Complementary to g(r) the orientational correlation function g6(r) gives a quantitative

measure of the orientational order of the system. Figure 5.6 shows g6(r), calculated using
Eq.(5.5), as a function of the applied shear rate, for the same shear rates as given in Figure
5.5. Again, the results have been averaged over four experiments. There is a significant
increase in the orientational order at larger distances for higher shear rates. The g6(r)
of the initial aggregate shows a steep exponential decay while the decay becomes more
moderate with increasing the applied shear flow. At the optimal shear rate (1.5 s−1) the
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decay line becomes almost horizontal showing once again that the shear flow forces the
aggregates to a crystalline state.
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Figure 5.6: Average g6(r) characteristic for different shear rates: the initial state (black
dashed line), γ̇ = 1.0±0.1 s−1 (grey line) and γ̇ = 1.5±0.2 s−1 (solid line). The curves
are an average from 4 experiments with N = 191, 203, 285 and 409, respectively. The
straight dashed lines are drawn as a reference for the decay of the function.
The change in the orientational order of the aggregates is also clearly seen in the

Fourier transforms of the images shown in Figure 5.7. These Fourier images correspond
to the aggregate configurations in Figures 5.2a, 5.2b and 5.2c, respectively. The Fourier
image of the initial structure consist of a complete ring which indicates that the ordering
of the particles is only local (Figure 5.7a) i.e. the aggregate has a 2D poly-crystalline
structure. Applying a shear flow leads to a gradual better arrangement of the particles,
and the ring gradually transforms to a series of bright spots. For 6-fold rotational symme-
try (hexagonal structure) one expects 6 spots on the edges of a hexagon. Initially there
are more than 6 spots, implying the presence of some domains with different orientation
(Figure 5.7b). At higher shear rates the hexagon appears indicating that all the particles
are oriented within the same domain (Figure 5.7c).Under influence of the shear flow the

a) b) c)a) b) c)

Figure 5.7: Fourier transforms of aggregates for different shear rates: a) the initial state,
b) γ̇ = 1.4 s−1, c) γ̇ = 1.7 s−1. N = 409.
aggregate structure can be deformed. Fourier images are used to measure the anisotropy
of the particle-particle distances inside the aggregate, as described in [18, 19]. Here we
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consider as a measure of the anisotropy:
A = 1− λ−/λ+

where λ+ and λ− are the shortest and longest reciprocal distance between neighboring
particles in the aggregate. A will vary between 0 and 1; it is 0 for isotropic structures. In
all cases the measured value for A is less than 0.15, while the experimental accuracy is also
about 15%. Thus, within the accuracy of our method, all aggregates can be considered
isotropic. In simple shear flow the circular aggregates are continuously rotating, thus the
orientation of the compression and extensional axis with respect to the aggregate also
varies in time. In contrast to experiments in elongation flow [16, 18, 19], this rotation
enhances the isotropy inside the aggregates. This enhancement was also observed from
the behavior of g6(r).
Stancik et al. [32] report Fourier images of 2D space filling structures. They observe

a shear induced ordering and melting due to the sliding of particle lines along each other,
caused by the boundaries of their equipment. In our case the whole aggregate can freely
rotate resulting in a rotating hexagonal ordering in which the layers do not need to slide
over each other. Hence in contrast to their observations we only a stationary (rotating)
hexagonal structure in our Fourier images.

5.3.3 Solid body rotation
In the model for aggregate break-up presented later in section 5.3.5, the aggregate will
be considered as solid disk. To check whether this assumption is valid, we measured
the orientation angle of the aggregates as a function of time and compared it with the
expression for solid body rotation of an ellipse in a simple shear flow [10, 24]:

tan θ = L
B tan

(2π (t− t0)
T

)

(5.6)
Here t is the time, t0 the reference time and T the period of rotation. L/B can be
compared with the measured from the experiments according to Eq. 5.6. Consequently,
T can be compared with the theoretical prediction [24]:

T = 2π
γ̇

(L
B + B

L
)

(5.7)
In Figure 5.8 the angle θ and the aspect ratio L/B have been plotted as a function

of the dimensionless time γ̇t for two different shear rates. The points represent the
experiments. The experimentally obtained aspect ratio is independent of the orientation
θ: L/B = 1.3 ± 0.1. The measured period for rotation T scales with the inverse of γ̇:
γ̇T = 11.8±0.2. The values for θ(γ̇t) have been compared with the theoretical prediction,
Eq.(5.6), given by the curved line in Figure 5.8. The values for L/B and T in Eq.(5.6)
were used as fitting parameters: L/B = 1.6 and γ̇T = 11.84, which is in fair agreement
with the measured values. As one can see the rotation of the aggregate agrees well with
a solid body rotation. Thus, the assumption, made in the modeling in section 5.3.5, that
the aggregate behaves as solid body is justified for our experimental conditions.

5.3.4 Critical Shear rate for Break-up
The most interesting characteristic of an aggregate in shear flow is the critical shear rate at
which the aggregate will break in relation to its size. We use the number of particles inside
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Figure 5.8: Rotation and elongation of an aggregate for two different shear rates ( 1.3 s-1 ,
solid symbols, and 1.6 s-1 , open symbols): the bullets represent θ(γ̇t) while the triangles
give L/B. The symbols are the experimentally obtained data and the solid line is given
by Eq. (5.6). The experimental data scale correctly with γ̇t.

an aggregate as a measure of its size. Neglecting the initial erosion of some particles, we
define the critical shear rate as the shear rate at which the aggregate reduces significantly
its size, by breaking-up in two or more nearly equal sized fragments.
In Figure 5.9 the number of particles has been plotted as function of the shear rate. As

one can see from the figure the larger aggregates (N = 200÷400) break all near the same
critical shear rate independent of their size; γ̇crit ≈ 1.8 ± 0.2 s−1. For small aggregates
(N < 50) a broader range of critical shear rates has been observed: γ̇crit ranges from 1.5to 2.0 s−1. For small aggregates the internal stresses near the center of the aggregate
are rather low so it is possible to form also more open aggregates which are easier to
break. For the larger aggregates, due to the relatively long range of the particle-particle
interaction, the internal stresses near the center of the aggregate are relatively high, the
particles are pushed closer together and the initial structure is always more close packed.

5.3.5 Modelling the critical shear rate
In this section a simple model is proposed to calculate the critical shear rate for aggregate
break-up as a function of the number of particles inside the aggregate. In this model we
focus on the normal capillary forces between the particles, because possible lateral sliding
forces will scale with these attractive forces. The hydrodynamic force driving the break-up
is the strongest when the elongation is perpendicular to the line of rupture.
Moreover the crystalline defect lines present at the initial stages have already disap-

peared during the restructuring at the lower shear rates before break-up occurs. Without
defect lines, also the lateral displacement of the two halves asks first an initial separation
of the individual particles on each side of the line of rupture. In that case also lateral
break-up will occur at higher critical shear rates. This is in line with observations by
Patina et al.[30, 31] Their results showed a strong tangential force between the particles
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Figure 5.9: Number of particles in an aggregate as a function of the shear rate.

that they explained from surface roughness.
For our modelling we consider an aggregate with a circular shape and a hexagonal

packing of the particles. We assume that the aggregate will break in the middle into two
equal parts. Moreover we suppose that before break-up occurs, the particles inside the
aggregate will not rearrange, thus the aggregate is considered as a solid body.
In Figure 5.10 the initial configuration has been given. The aggregate is divided into

two equal parts (A and B) and it is subjected to a simple shear flow. The center of
resistance of the aggregate is positioned at the origin of the flow field. Due to the shear
flow the aggregate will rotate and, depending on the momentary orientation, the parts A
and B are alternatively pushed together or pulled from each other by the flow.
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Figure 5.10: Schematic representation of the aggregate and the coordinate systems used
in the calculations.
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At rest all the particles in part A exert a force on all the particles in B, due to capillary
interactions. The net capillary force between A and B is balanced by a normal force which
acts on the contact line between A and B. In the elongational phase of the shear flow
the flow field tries to separate part A from B, reducing the normal force between them.
At a certain flow strength, the critical shear rate, this normal force becomes zero and the
capillary force is completely balanced by the hydrodynamic force. A slight increase of the
shear rate will result in separation of the two parts from each other. We will consider this
critical shear rate, neglecting the dynamics of the cyclic compression and stretching and
considering only the elongational component of the flow field.
Hence, to predict when break-up will occur, both of the capillary and hydrodynamic

forces have to be calculated. The capillary force between A and B can be calculated by
summing the particle-particle interactions between all particles in A with all particles in
B. In the ”Linear Superposition Approximation” (LSA) [27] the capillary force between
particle a and b is given by:

F [a,b]
lsa = 2πσqQ2K1(qrab)

where K1 (x) is the modified Bessel function of first order and rab is the distance between
particles a and b. The coefficient Q is defined as: Q = rcl sinψ where rcl is the radius
of the three phase contact line around the particle and ψ is the angle between the liquid
interface and the horizontal plane near the particles. The inverse capillary length is given
by q = (g∆ρ/σ)1/2 where g is the acceleration due to gravity, ∆ρ is the density difference
between the lower and upper liquid and σ is the surface tension. In [23] we showed that
the LSA expression is valid also for short distances between the particles and in the LSA
the multiparticle interactions are just pair-wise additive. Using the above arguments the
capillary force dFc between a small area element dAa located at (ξa, ηa) and an areaelement dAb located at (ξb, ηb) (see Figure 5.10) is given by:

dF [c] = 2πσqQ2K1 (qrab)n2dAadAb (5.8)
where rab = [(ξb − ξa)2+(ηb − ηa)2]1/2 is the distance between dAa and dAb. The number
of particles per unit area n is given by n = 1/Aspec, where Aspec is the specific area of
one particle in hexagonal packing: Aspec = 2√3R2p.Here we consider only elements which are at least 2Rp apart (rab ≥ 2Rp). To sum
the interactions of every element dAa in A, with every element dAb in B, we have to
integrate over the areas of both A and B. For the components of the force dFc in the ξ-
and η-direction we have:

F [c]
ξ = C1

∫

Ab

∫

Aa

K1(qrab) cosφabdAadAb

F [c]η = C1
∫

Ab

∫

Aa

K1(qrab) sinφabdAadAb

where C1 = 2πσqQ2n2 is a constant and φab is the angle of the vector connecting bothareas with the ξ-axis:
tanφab = ηb − ηa

ξb − ξa (5.9)

Due to symmetry arguments F [c]η , will be zero in our case.



86 Chapter 5

We assume that the hydrodynamic force on parts A and B of the aggregate can be
calculated as the sum of the drag force on the separate particles. For Stokes flow this
drag force is given by:

Fd = 6πµRpfdV (5.10)
where µ is the liquid viscosity and fd is a friction coefficient to account for the partial
immersion of the particle and the hydrodynamic screening of the other particles in the
aggregate. V is the local undisturbed flow velocity.
In simple shear flow the velocity is given by: V = γ̇yex. This flow can be decomposedinto a straining flow and a rotation [24]:

V = 1
2 γ̇

(yex + xey
)+ 1

2 γ̇
(yex − xey

) (5.11)
Since the aggregate can follow the rotation, this component of the flow does not exert
any force on the aggregate. Eventual break up of the aggregate stems from the straining
flow field. Therefore we only consider this component in the calculations (the first term
on the right hand side). Because the force should be calculated in the body fixed (ξ, η)
coordinate system, the (x, y) components of this straining field are expressed in the (ξ, η)
components:

Vξ = 1
2 γ̇ (ξ sin 2ϕ+ η cos 2ϕ)

Vη = 1
2 γ̇ (ξ cos 2ϕ− η sin 2ϕ)

where ϕ is the angle between the ξ and the x direction.
To get the total drag force acting on part A we again integrate over the area of A:

F [d]
ξ = C2

∫

Aa

VξdAa (5.12)

F [d]η = C2
∫

Aa

VηdAa (5.13)
where C2 = 3Rpfdn is a constant. Due to symmetry the total drag force on part B,
should be equal but opposite to that on part A.
The extensional drag force is maximum for ϕ = 45o. In this case the line of fracture

coincides with the compressional axis. Both Fc,η and Fd,η are zero in this case and we
can express the critical shear rate as:

γ̇crit = 2C1
C2

∫

Ab

∫

Aa
K1 (qrab) cos θabdAadAb

∫

Aa
ξdAa

(5.14)

The integral expression for the critical shear rate, Eq. (5.14), has been evaluated numer-
ically, where γ̇crit was expressed as a function of N , i.e. the number of particles insidethe aggregate; N is related to the radius of the aggregate Ragg (assuming close hexagonal
packing) by:

N = πR2agg
Aspec

For comparison of the model with the experimental data, we plot in Figure 5.11
the critical number Nc as a function of the shear rate γ̇ instead of plotting γ̇crit as afunction of N (as it was in Figure 5.9). The calculations (represented by the curves)
have been compared with the experimentally obtained critical sizes (the symbols). As
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one can observe, the calculated critical size is almost independent of the shear rate,
which qualitatively matches the experimental results. This result is consistent with model
calculations performed by Bagster and Tomi [7] which show that both the tensile and shear
stresses are independent of the aggregate size.
The drag coefficient fd was used as free parameter in the calculations. By matching

the theory with the experimental data one obtains fd = 0.24 ± 0.2. Based on literature
data [28] fd of a half immersed single sphere at a w/a interface is about 0.5. In the
present model the hydrodynamic drag force is assumed to act equally on all particles which
overestimate the drag force [12]. In fact the outer particles of an aggregate shield the inner
particles from the flow. Thus the drag coefficient is expected to be different for different
particles depending on their position inside of the aggregate. This last consideration can
be taken into account by assuming an average value for fd. The outer particles will have
the highest fd (fd ≈ 0.5) while for the inner particles fd is less than 0.5. Thus, we can
match the critical shear rate of our model to the experimentally determined critical shear
rate by assuming an average < fd > = 0.24 ± 0.2.
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Figure 5.11: Critical number of particles inside the aggregate versus shear rate as cal-
culated from the theory for fd = 0.24 (the black line) compared with the experimentally
found critical shear rates (the symbols). The grey line on the right represents the calcula-
tions for fd = 0.22 and the one on the left for fd = 0.26, indicating the sensitivity of the
critical shear rate on the value of f d.
It has been reported before that a pure extensional flow is more efficient in breaking

up aggregates than a simple shear flow [24, 29]. In simple shear flow the efficiency of
break-up is lowered by the rotation of the aggregates. Due to this rotation each part of
the aggregate is exposed to the extensional flow only for a short time and then has time
to recover (to attract again). This slows down the process of break-up and possibly also
affects the critical shear rate itself.
Secondly, the particles can also rearrange. This reduces the effective shear rate as

experienced by the aggregate. In other words: particles moving with the flow experience
a smaller drag force than particles which are kept on the same position, which is the case
for solid body approximation. The experimental data for the coordination number show
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a decrease in order for shear rates higher than 1.5 s−1; this supports the statement that
particles indeed start to rearrange inside the aggregate.
Moreover, due to the small gap between the separating parts there is also a hydrody-

namic drag force to overcome which was not taken into account. However, because the
aggregate floats on the liquid/air interface, no pressure can built up in the gap between
the separating parts; consequently this hydrodynamic drag force will be small.
All these effects are assumed to have only a small influence on the critical shear rate

and have been absorbed in the fitting parameter fd.
Although we studied the behavior of compact 2D aggregates, we think this is also

useful for understanding the break-up behavior of more open 3D aggregates because,
in contrast with dense 3D aggregates which are impermeable for the shear flow, all the
particles in a 2D structure feel the surrounding flow directly due to the planar structure
of these aggregates and as such it is comparable with permeable 3D structures.

5.4 Conclusions
The behavior of an aggregate in shear flow is a complex phenomenon. Only a few number
of models exists that describe the behavior of a 2D aggregate in shear flow and even
fewer experimental results are available. We are the first to investigate the behavior of
aggregates in a simple shear flow for a wide range of aggregate sizes.
It was found that with increasing shear rate the aggregates become more circular,

ordered and dense. The order parameters g(r) and g6(r) show an increasing translational
and orientational long range order with increasing shear rate. This effect can also be
observed directly from the Fourier images. However, just before breaking (1.5 s−1) a
small increase in disorder was found. Opposite to pure elongational flow here no large
anisotropy was shown before break-up.
Analysis of the rotational motion of some non-circular aggregates reveals a variation in

rotational speed and a period of rotation which are consistent with a solid body rotation.
The aggregates break-up at roughly the same critical shear rate: 1.8 ± 0.2 s−1. A

simple model was developed to explain the experimental results. The aggregate was
modeled as a solid body that eventually will break in two nearly equal pieces. The
capillary and drag force on the two pieces were calculated and from their ratio the critical
shear rate was found. In accordance to experimental observations, the theoretical model
shows that the size dependence of the critical shear rate is weak. This is also consistent
with the model developed by Bagster and Tomi [7]. Our model predicts the critical shear
rate correctly if one assumes an average value < fd > of 0.24. This is in line with the
expectation that the drag force on particles near the center of the aggregate is screened
by the presence of the outer particles, reducing the average value of fd, compared to a
single partially immersed particle.
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Organization for Scientific Research (NWO).

Appendix 5A. Calculation of Comax(N)
To calculate the optimum coordination number for an aggregate of finite size we consider
a hexagonal aggregate with k particles in each of the 6 edge rows. Such a hexagon
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contains in total N (k) = 3k (k − 1)+1 particles. The largest hexagon inside this hexagon,
in which all particles have 6 nearest neighbors, contains (k − 1) particles in the edge
rows and counts N (k−1) particles. Moreover there are 6 vertex particles having 3 nearest
neighbors and another 6 (k − 2) edge row particles having 4 nearest neighbors. (The total
number of particles correctly sums up to: N (k−1) +6+ 6 (k − 2) = N (k).) The total sum
of nearest neighbors S(k)nn becomes:

S(k)nn = N (k−1) × 6 + 6× 3 + 6 (k − 2)× 4
= 6 (3k2 − 5k + 2)

= 6
(

N (k) −
√

1 + 4
3
(N (k) − 1)

)

The average coordination number, which we identify with Comax(N), is just the ratio
between this sum and the total number of particles inside the hexagon:

Comax = S(k)nn
N (k) = 6

(

1− 1
N

√

1 + 4
3 (N − 1)

)

In Figure 5.12 the result for Comax(N) versus the number of the particles is presented.
As expected for large N , Comax(N) will approach 6 and it is less for small numbers of
particles where the edge effects have a larger influence.
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Figure 5.12: The calculated maximum coordination number for hexagonal packed particles
as a function of the number of particles.
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Chapter 6

Fragmentation and erosion of
two-dimensional aggregates in
shear flow
Abstract

We consider single two-dimensional aggregates, containing glass particles trapped at a wa-
ter/oil or water/air interface. Two modes for aggregate break-up are investigated: break-up by
fragmentation into a few parts and break-up by erosion of single particles. We have studied the
critical shear rate for these modes as a function of the aggregate size. Two different particle
sizes were used. The smaller particles, with a radius of 65µm, form aggregates which break-up
predominantly by erosion at a shear rate between 0.5 and 0.7 s−1, which value hardly depends
on the size of the aggregates, while the larger particles, with a radius of 115 µm, form aggre-
gates that break by erosion or by fragmentation. Again in both modes the critical shear rate
depends only weakly on the size of the aggregates and ranges between 1.6 and 2.2 s−1. Also the
structural changes inside the aggregate before break-up were studied. The aggregate behavior
at the water/air and water/oil interfaces is quite similar. The critical shear rate for break-up
was also modeled. The model shows in both modes a weak dependence of the critical shear
rate on the aggregate size, which is consistent with the experimental observations. The kinetics
of the erosion process was modeled, too and compared with the experimentally obtained time
dependence of the aggregate size.

The differences for the large and small particle systems can be attributed to the occurrence
of friction forces between the particles, which one expects to be much larger for the large particle
system, due to the stronger two particle interaction.

6.1 Introduction
The behavior of aggregates is an important issue in liquid suspension processes. For ex-
ample in waste water treatment one needs an efficient method for the removal of particles
[1, 2, 3, 4]. Larger particles are easier to remove, thus it is convenient to work with
aggregates of particles. Also smaller flocs will settle down slower and will be captured
less efficiently by air bubbles. Small flocs can also block the membranes during filtration.
These processes are designed to minimize the breaking of flocs, but still the flocs can be
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subjected to high shear rates (e.g. close to a mixing impeller or during the transfer from
one tank to another) where the flocs have to resist to the corresponding stresses [4]. Thus
it is important to study aggregate behavior when subjected to flow in order to design
efficient methods for their treatment.
Detailed knowledge of how 3D aggregates will break is still missing. This is due to the

complexity of the system and the involved processes: many body interactions, irregular
shapes and influence of contamination. Moreover, not all forces acting in these processes
are clear [4]. The logical way to investigate such a complicated system is to start with the
simpler 2D case. The main advantage of 2D experiments is the absence of gravitational
settling of the aggregates, which makes the visualization much easier. The theoretical
modeling in 2D is also simpler. However, even for 2D systems there is little information
available on the break up mechanisms for different conditions.
Floc break-up has been classified in two general modes [4, 5]. The first one is the

removal of single particles or small aggregates from the parent aggregate, called surface
erosion. In the second mode the flocs break-up into pieces with similar sizes, called
fragmentation. The resulting size distribution after rupture can inform us whether erosion
or fragmentation has occurred. Erosion produces fragments with much smaller size than
the original aggregate thus the particle size distribution is roughly bimodal [6]. The main
qualitative difference between erosion and fragmentation is the energy input which is low
for erosion and high for fragmentation. The time scales of the two processes are also
different. Fragmentation occurs immediately after applying of the critical stress while the
erosion occurs over much longer time scales [4]. For 3D systems there are indications that
the two modes are driven by different stresses. Erosion is caused by shear in tangential
direction and fragmentation by a tensile stress acting normally across the floc [7, 8, 9].
There is no unique way to determine the floc strength because the flocs can be very

different in size, shape and properties. It is also difficult to compare the results from
different studies because the results depend strongly on the used technique for measuring
the aggregate strength. Most researchers investigate the dependence of the floc size as
a function of the applied hydrodynamic shear flow. For a review of the techniques used
we refer to Jarvis and coworkers [3]. The simplest way of evaluating the floc strength
is to measure the ratio between the floc size before and after break-up for a particular
shear rate. The floc strength can be related to the energy dissipation of the system or the
velocity gradient applied to the system. This technique relays upon complex theories and
floc break-up models. Recently developed techniques directly measure the floc rupture
[10, 11, 12]. Pantina and Fust [10] investigated the bending of bonded colloidal particles
using optical tweezers. The results show the existence of strong tangential forces between
the particles which they explain with a surface roughness. Yeung and Pelton [11] use
micromechanical techniques to pull apart flocs. They found that break-up occurs at the
weakest spot inside the aggregate. This explains why a compact aggregate will break
due to erosion. According to their results the aggregate strength did not depend on the
aggregate size.
In 2D most of the research has been concentrated on the investigation of particle

monolayers at a liquid interface [13, 14, 15, 16]. Aggregates in 2D were investigated by
Hoekstra [17] and Hansen [18]. Hoekstra and coworkers [17] studied two types of 2D
suspensions with particles sliding over each other or not depending on the attraction
potential between the particles. They found that shear flow induces the same type of
anisotropy in both systems. In the system with a strong attractive potential the density
inside the aggregates increases with the applied shear flow while it decreases in systems
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with a weak attraction between the particles. Break-up was found to occur at the weakest
link in the aggregate (at a single contact point between the particles) and erosion was not
observed. Hansen and coworkers [18] studied 2D colloidal aggregation in a Couette cell.
The development of the cluster size and structure was followed at different shear rates.
The weakly aggregated systems showed rearrangement into a more compact structure and
a densification with increasing shear rate while the strongly aggregated systems did not
display a significant change in structure.
Analytical models can be used to describe the aggregate break-up. These models

generally oversimplify the aggregate structure. The two limiting cases are a uniform
impermeable [19] or permeable [20] sphere. The model developed by Sontag and Russel
[21] considers also an nonhomogeneous aggregate structure.
The fracture of the aggregate is assumed to occur along planar surfaces (usually passing

through the aggregate center) [19, 22] or by crack growth [23]. The several models for
break-up predict a different dependence on the volume fraction and the radius of the
primary particles.
Only a few studies dealing with erosion have been carried out [4, 24, 25]. Powell

and Mason [24] described the erosion kinetics for compact spherical aggregates without
attraction between the primary (cohesionless) particles. They found that the erosion rate
depends on the flow type and the ratio between the aggregate and primary particle size,
but it was independent of the shear rate.
It is quite complicated to model the transient response of an aggregate to a change

in flow pattern, analytically [26, 27]. The easiest way to address this transient response
is to use a simulation. A promising simulation model is based on the discrete element
method (DEM) [28, 29]. Currently the limitation of DEM is that it does not take into
account the exact local flow field. A more advanced version of DEM attempts to model the
hydrodynamic contributions to the drag force [30], however it is a rough approximation
because it adjusts the flow based only on the local porosity of the aggregate.
In our previous study [31] (see chapter 5) we presented experimental results for the

break-up of aggregates of glass particles at the water/air interface. An advantage of our
experimental method is that it is direct and nondestructive. We observe with video mi-
crocopy single aggregates, which give us a detailed look into the processes of breaking.
In addition, the reverse process of aggregation after collision with another aggregate is
suppressed, which also simplifies the modeling. However the method has certain draw-
backs, too. First, like every method looking at single particle level, it is difficult to get
enough data for statistically significant results. Second, it was not possible to keep the
aggregates in the field of view and thus the exact moment of aggregate break-up is seldom
seen. To be able to collect statistically reliable data we work with aggregates consisting
of sub-millimeter non-colloidal particles which will give a similar initial structure for all
experiments. Using non-colloidal particles has the advantage that we have a well defined
attraction force because the capillary force is significantly larger than the other forces.
Our results showed that the aggregates break at nearly the same shear rate indepen-

dent of their size. The evolution of the aggregate before break-up was also investigated.
With increasing shear rate the aggregates adopt a more circular shape and the particles
order in a denser hexagonal structure. A simple theoretical model was developed to ex-
plain the experimental data. In this model it was assumed that the aggregate is a circular
disk which will break exactly along a center line into two equal pieces. The capillary and
drag forces acting on both parts of the aggregate were calculated and from their ratio the
critical shear rate was found. The model shows a weak size dependence of the critical
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shear rate for break-up which is in agreement with the experimental observations.
Here we continue the investigation of the aggregate break-up, expanding the studied

systems to two different interfaces (water/air and water/oil) and two particle sizes (Rp =
115 µm and 64 µm). Moreover, special attention has been paid to the possible modes of
the break-up process. We are interested in how and where the aggregates will break. The
aggregate structure before break-up was also investigated and compared for the different
systems. The modeling has been developed further by including the determination of the
critical shear rate for erosion and the kinetics of the erosion process.
The structure of the present chapter is as follows. In section 6.2 the forces acting

between the particles are discussed and moreover, single particle erosion is modeled. In
section 6.3 we present and discuss our experimental results. The chapter ends with a
summary of our findings.

6.2 Theory
6.2.1 Interaction forces
For colloidal 2D systems interaction forces include capillary, Van der Waals, electrostatic,
excluded volume repulsion and electric-field-induced capillary [32] (electrodipping) forces.
Due to the size of the primary particles the capillary interaction in our system is so

strong that all other interaction forces, except the excluded volume repulsion, can be ne-
glected. As we have shown in Chapter 4 [33] in the ”Linear Superposition Approximation”
(LSA) the capillary force between particle a and b is given by:

F [a,b]
lsa = 2πσqQ2K1(qrab) (6.1)

where K1 (x) is the modified Bessel function of first order and rab is the distance between
particles a and b. The coefficient Q is defined as: Q = rcl sinψ where rcl is the radius
of the three phase contact line around the particle and ψ is the angle between the liquid
interface and the horizontal plane near the particles. The inverse capillary length is given
by q = (g∆ρ/σ)1/2 where g is the acceleration due to gravity, ∆ρ is the density difference
between the lower and upper liquid and σ is the surface tension. In [33] we showed that
the LSA expression is valid also at short distances between the particles and in the LSA
the multiparticle interactions are just pair-wise additive. In Figure 6.1 the capillary force
between two particles has been plotted for all investigated systems.
The only tangential interaction force arrises from the friction between two touching

particles. This friction can be dynamic (sliding) or static (sticking). The distinction
is important, because the dynamic friction can be significantly smaller than the static
friction. The friction force between two surfaces is considered to be proportional to the
normal force with which the surfaces are pushed together. In the inner regions of an
aggregate the normal forces are larger than in the outer regions, due to the long range
tail of the two particle interaction, and hence also the friction forces are larger in the
inner regions.

6.2.2 Flow field
A particle moving in a liquid experiences a drag force. A particle moving in an interface
between two liquids experiences a drag force due to the presence of the two liquids and
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Figure 6.1: Calculated capillary forces. Panel a) shows the calculations for the particles
with Rp= 115 µm and panel b) shows the force for Rp= 65 µm. The solid lines correspond
to water/air interface and the dashed to water/oil.

the interface itself. Hence we modify this drag force by introducing an additional fd
coefficient: Fd = 6πµRpfdV.
The nature of the flow also influences the fragmentation process. In simple shear flow

significantly higher shear rates are required for break-up, compared to extensional flow
[34]. In general the less vorticity there is in a flow, the more efficient is the break-up
[35]. On the other hand, simple shear flow can be more efficient than extensional flow if
rupture is occurring along crack line. Due to the rotational motion of the aggregates the
crack line will pass through certain orientations that are favorable for aggregate break-up
[36].
The flow field around a particle in an aggregate is disturbed by its neighboring parti-

cles. This hydrodynamic contribution can give rise both to normal and tangential forces
on the particles. In a system with just two particles it leads to an effective repulsive force
between approaching particles and can prevent them from aggregating. Most analytical
theories either do not take the hydrodynamic contribution into account, by assuming a
completely porous aggregate, or approximating the aggregate as very dense and imper-
meable, in which case the external flow does not penetrate at all inside the aggregate.
In our 2D system there is a more or less free flow above and below the particles and in
first approximation the hydrodynamic force on an individual particle can be modeled as
a simple Stokes law as for isolated particles.
The influence of the Brownian motion can be neglected in our non-colloidal system.

Moreover, inertia forces have been calculated to be significantly smaller than the interac-
tion and drag forces.

6.2.3 Critical shear rate in the erosion model
The critical shear rate for erosion can be calculated using the formalism explained in
Chapter 5 [31] with some small adjustments. We consider a disk shaped aggregate with
a single particle on its the rim as illustrated in Figure 6.2.
To predict when break-up will occur in this case, again both of the capillary and

hydrodynamic forces have to be calculated. The capillary force between the aggregate A
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Figure 6.2: The scheme used for modelling erosion of single particle.

and the particle b can be calculated by summing the particle-particle interactions between
all particles in A with particles b. Using expression 6.1 for the particle interaction, the
capillary force dFc between a small area element dAa located at (r cosφ, r sinφ) and
particle b located at (Ragg +Rp, 0) is given by:

dF [c] = 2πσqQ2K1 (qrab)ndAa (6.2)
where rab = [(Ragg +Rp − r cosφ)2 + (r sinφ)2]1/2 is the distance between dAa and the
particle. The number of particles per unit area n is given by n = 1/Aspec, where Aspec is
the specific area of one particle in hexagonal packing: Aspec = 2√3R2p.To sum the interactions of every element dAa in A, with the particle b, we have to
integrate over the area of the aggregate A. For the components of the force dFc in the ξ-
and η-direction we have:

F [c]
ξ = C1

∫ 2π

0

∫ R

0
K1(qrab) cosφ rdrdφ

F [c]η = C1
∫ 2π

0

∫ R

0
K1(qrab) sinφrdrdφ

where C1 = 2πσqQ2n is a constant. Due to symmetry arguments F [c]η , will be zero in our
case.
We assume that the hydrodynamic force on aggregate A and particle b can be calcu-

lated as the sum of the drag force on the separate particles. For Stokes flow this drag
force is given by:

Fd = 6πµRpfdV (6.3)
where µ is the liquid viscosity and fd is a friction coefficient to account for the partial

immersion of the particle and the hydrodynamic screening of the other particles in the
aggregate. V is the local undisturbed flow velocity.
In simple shear flow the velocity is given by: V = γ̇yex. This flow can be decomposedinto a straining flow and a rotation [35]:

V = 1
2 γ̇

(yex + xey
)+ 1

2 γ̇
(yex − xey

) (6.4)
Since the aggregate can follow the rotation, this component of the flow does not exert
any force on the aggregate. Eventual break up of the aggregate stems from the straining
flow field. Therefore we only consider this component in the calculations (the first term
on the right hand side). Because the force should be calculated in the body fixed (ξ, η)
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coordinate system, the (x, y) components of this straining field are expressed in the (ξ, η)
components:

Vξ = 1
2 γ̇ (ξ sin 2ϕ+ η cos 2ϕ)

Vη = 1
2 γ̇ (ξ cos 2ϕ− η sin 2ϕ)

where ϕ is the angle between the ξ and the x direction.
The total drag force acting on particle b is given by:

F [d]
ξ = 6πµRpfdVξ (6.5)

F [d]η = 6πµRpfdVη (6.6)
The total drag force on part A, should be equal but opposite to that on particle b. The
extensional drag force is maximum for ϕ = 45o. In this case the line of fracture coincides
with the compressional axis. Both Fc,η and Fd,η are zero in this case and we can express
the critical shear rate from the force balance

3πµRpfdγ̇crit (Ragg +Rp) = C1
∫ 2π

0

∫ R

0
K1(qrab) cosφrdrdφ

as:
γ̇crit = σqQ2

3√3fdµR3p

∫ 2π
0

∫R
0 K1(qrab) cosφrdrdφ

(Ragg +Rp) (6.7)
The integral expression for the critical shear rate, Eq. (6.7), has been evaluated numer-
ically, where γ̇crit was expressed as a function of N , i.e. the number of particles insidethe aggregate; N is related to the radius of the aggregate Ragg (assuming close hexagonal
packing) by:

N = πR2agg
Aspec

The critical shear rate for erosion assuming fd = 1 has been calculated for the 2 different
systems studied here: small and large particles. The viscosity and interfacial tension
values are taken for the water/air interface. The results are presented in Figure 6.3. As
one can see the small particles aggregate will erode at much lower shear rate than the
large particle aggregates. The dependence of the critical shear rate on the size of the
aggregate is very small, especially for the small particles system. For comparison the
critical shear for breaking in two halves is also presented in the figure. Surprisingly, the
critical shear rate for breaking by erosion and fragmentation are very close to each other.
Hence, one can expected the aggregates to break by both mechanisms. One has to keep
in mind that we only have an order of magnitude guess for the value of fd. For fd �= 1 we
can read the vertical axis in Figure 6.3 as fdγ̇crit to obtain the dependence of γ̇crit on fd.Additionally, the value of fd could be different for the water-oil and water-air interface.

6.2.4 Modeling the erosion kinetics
We are also interested in the number of particles dN inside an aggregate that escape from
the aggregate during dt or, equivalently, the time rate of change of the aggregate radius
Ragg:

dN
dt = d

dt
πR2agg
2√3R2p

= πRagg√3R2p
dRagg
dt (6.8)
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Figure 6.3: Calculated critical shear rate for erosion of single particle for WA115 (with
open squares) and WA65 systems (with open circles). The lines are fit, according to
Eq.(6.10). With crosses and stars symbols are presented also the critical shear rate for
rupture of the aggregate in two equal pieces. The calculations are made assuming fd = 1.

To simplify the argument we assume that the average escape rate Y for a single particle
will be given by:

Y = c1 (Fhydr − Fattr)max
where c1 is a constant. The total escape rate dN/dt should be proportional to the number
of particles at the rim of the aggregate: Nedge = πRagg/Rp:

dN
dt = −πRagg

Rp
Y = −c1πRagg

Rp
(Fhydr − Fattr)max (6.9)

In the preceding section we calculated the critical shear rate for break-up. From that we
can express the maximal attraction force as:

Fattr = C1
∫ 2π

0

∫ R

0
K1(qrab) cosφrdrdφ = 3πµfb (Ragg +Rp)Rpγ̇crit

while the maximal hydrodynamic force has been given by:
Fhydr = 3πµfb (Ragg +Rp)Rpγ̇

So Eq. (6.9) can be written as:
dN
dt = −3c1π2µfbRagg (Ragg +Rp) (γ̇ − γ̇crit)

Combining this with Eq. (6.8) gives:
dRagg
dt = −A (Ragg +Rp) (γ̇ − γ̇crit)

with A = 3√3c1πµfbR2p a dimensionless constant. If γ̇crit = const, the general solutionof this equation is given by:
Ragg(t) = R0 exp(−A (γ̇ − γ̇crit) t)
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with R0 the radius of the aggregate at t = 0 when the shear rate was set to γ̇. The
influence of Rp has been neglected in this solution because the assumption that A is
constant is only valid for large aggregates: Ragg/Rp >> 1.
However, γ̇crit does depend on the size and we describe this dependence as:

γ̇crit
γ̇c

=
( N
Nc

)−1/k
=

(Ragg
Rc

)−2/k
(6.10)

which is a good representation of the observed size dependence. The differential equation
which one has to solve, becomes:

d
dt

(Ragg
Rc

)

= −A(Ragg
Rc

+ Rp
Rc

)

(

γ̇ − γ̇c
(Ragg

Rc

)−2/k)

The steady state solution of this differential equation is given by:

γ̇ − γ̇c
(Ragg

Rc

)−2/k
= 0

or
R∞ = Rc

( γ̇
γ̇c

)−k/2

with R∞ the radius of the aggregate for t → ∞. This could also be concluded directly
from Eq.(6.10). Assuming Rp << Ragg one obtains for the differential equation:

∫ X(t)

X0

dX
X

(

X−2/k − [X∞]−2/k) = Aγ̇t

where X = Ragg/Rc and X∞ = R∞/Rc. Introducing ξ = X/X∞ the integral reduces to:

Aγ̇t =
∫ ξ0

ξ(t)
dξ

ξ
(

1− ξ−2/k)

which is a standard integral:
∫ dx

x (1− x−m) = 1
m ln (xm − 1)

Substitution of m = 2/k results in:

Aγ̇t = k
2 ln

(

ξ2/k0 − 1
ξ2/k(t)− 1

)

This relation can be inverted to:
ξ(t) =

[

1 +
(

ξ2/k0 − 1
)

exp (− 2
kAγ̇t

)

]k/2

where ξ = Ragg/R∞ = (N/N∞)1/2. Hence one eventually obtains for the aggregate size
as a function of time:

Ragg(t) =
[

R2/k∞ +
(

R2/k
0 −R2/k∞

)

exp (− (2Aγ̇/k) t)
]k/2
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where R0 is the size at t = 0. The number of particles inside the aggregate as a function
of time is given by:

N(t) =
[

N1/k∞ +
(

N1/k
0 −N1/k∞

)

exp (− (2Aγ̇/k) t)
]k (6.11)

Several approximations have been made in the last two sections which limit the ap-
plicability or accuracy of this simple model. Below those assumptions are summarized:

• The dependence of the critical shear rate on the aggregate radius is calculated
by approximating the aggregate by a disc with constant particle density. This
approximation is only valid for large aggregates; at small aggregates the discrete
particle-particle interactions will become important.

• We use a power law for the dependence of the critical shear rate on the aggregate
radius.

• We assumed that the erosion rate is proportional to the difference (Fhydr − Fattr).
• We assume single particle erosion. Multiple particle erosion might result into and
increased erosion rate.

6.3 Experimental
6.3.1 Materials and Methods
Materials
All measurements were conducted with spherical glass particles trapped at a liquid-fluid
interface. As lower liquid phase was used a mixture of water with glycerol (35 wt. %
, Merck). As upper phase was used pentadecane (Merck) or air. In this way two kinds
of interfaces were created: a water/air and a water/oil interface. Moreover, two sizes of
glass particles were used: Rp = 115 µm and Rp = 65 µm (Polysciences Inc, density 2480
kg/m3). The glass particles were small enough to be trapped at the water/air interface.
The system properties are summarized in Table 6.1. The lower phase has a viscosity of
2.34 mPas and a density 1090 kg/m3. Pentadecane has a viscosity of 2.34 mPas, too
and a density 773 kg/m3. For all systems the particles were submerged mostly in the
lower phase. Images of the particles positioned at the interface are shown in Figure 6.4
and the measured contact angles αc are included in Table 6.1.

System Lower phase Upper phase γ, mN/m Rp, µm α◦cWA115 Water+Gly Air 71 115±10 55◦±2.5
WO115 Water+Gly PD 44 115±10 54◦±3
WA65 Water+Gly Air 71 65±10 41◦±5
WO65 Water+Gly PD 44 65±10 43◦±5

Table 6.1: System properties; Gly: Glycerol, PD: Pentadecane.
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a) b) c) d)a) b) c) d)

Figure 6.4: Images of single particle positioned at the interface: a) WA115, b) WO115,
c) WA65 and d) WO65.

Experimental Setup and Procedure

The experimental setup as it was illustrated in Figure 5.1 of Chapter 5 consists of a
Couette device with two concentric cylinders (Ri = 24 mm, Ro = 45 mm) that can be
rotated in opposite directions. This creates a controlled shear flow in the liquid confined
by the gap between the cylinders, with a stagnant zone at a controllable radial position.
Thin stainless steel rings were attached to the cylinders to create an edge at which the
liquid-air interface is pinned. The flatness of the interface is controlled by adding or
removing liquid to or from the lower phase and it is measured from the refraction of a
laser beam at the interface, as explained in Chapter 2.
The glass particles were added to the w/a interface. They aggregated fast due to the

strong capillary attraction between them. In this way the initial aggregate was created.
For the w/o experiments additionally the oil phase is poured on the top of the water layer.
It was checked that adding the oil phase does not change the pinning of the three phase
contact line, keeping the liquid-liquid interface flat.
The liquid interface is illuminated through the transparent bottom of the outer cylin-

der, while it is observed from above using a CCD camera equipped with a zoom lens. The
camera was connected to an image acquisition system. In principle it is possible to keep
the aggregate in the stagnant zone and thus in the field of view of the camera. However,
the aggregate will stay on the same spot only if the total shear forces on all particles
cancel each other. When the aggregate rotates a little bit, due to the irregular shape
of the aggregate, the shear forces change. Hence, in order to keep the aggregate at the
same place, the rotational speed of the cylinders should be adjusted continuously using a
feedback loop, which in practice is not possible due to the relatively slow response of the
flow field to the cylinder speed adjustments, see Chapter 2. This was observed by other
researchers [18], too. Instead the aggregate is allowed to rotate slowly in the Couette
device. The CCD camera is kept stationary and the aggregate is recorded when it passes
the field of view. The rotational speeds of the cylinders are set to minimize the velocity
of the aggregate.
The protocol for measuring the restructuring and eventual break-up of an aggregate

was as follows: After the formation of the aggregate it was sheared for 10 minutes at
fixed shear rate, starting at 0.1 s−1, while images of the aggregate were captured. This
time span was long enough to reach a steady state. After 10 minutes the shear rate was
increased in steps of 0.10 s−1 and again kept constant during 10 minutes. The highest
applied shear rate was 2.5 s−1 enough to observe break-up of the aggregate.
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Aggregate Characterization
The most relevant properties of the aggregate are internal structure, size, and shape. As
characteristic of the aggregate size we use the number of particles, for the shape the aspect
ratio L/B and for the structure the coordination number Co as well as the Fourier trans-
forms of the images. All those characteristics were extracted from the captured images
using the image processing software tools Optimas and ImageJ. The way to determine
them has been explained in detail in Section (5.2.3), see also ref [32].

Reproducibility
In general the behavior of all aggregates from the four systems considered was qualitatively
the same. It should be noted however that for the same system, identical experiments
sometimes produce different results. Considerable effort has been put into controlling the
experimental conditions. Before each experiment the whole set-up was rigorously cleaned
to prevent contamination by previous experiments. Also the liquid-particle systems were
allowed to equilibrate before the experiments start as well as after a change in the shear
rate. Both these reproducibility enhancing measures make a single experiment very time
consuming. Hence, this set-up and procedure are not suitable for obtaining statistical
information based on a very large number of experiments.
There are two main arguments that can explain the observed reproducibility prob-

lems. First, the bad reproducibility could be related to the structure (dislocation density,
order, porosity, shape) of the aggregate at the beginning of an experiment. The initial
structure of the aggregate can influence its behavior throughout the whole experiment.
Each aggregate is unique and hence the differences between the experiments would have
a statistical origin.
Second, the bad reproducibility could be caused by uncontrolled experimental condi-

tions. Contamination of the phases can be excluded due to the rigorous cleaning pro-
cedures. However, during the preparation of the experiment, dust from the ambient air
can pollute the interface. These dust particles are difficult to observe since they usually
are smaller than the particles. When there is dust present between the particles it could
change the aggregate behavior.
Another uncontrolled parameter is the ambient temperature, which directly influences

the viscosity and the interfacial tension. However, it is expected that the temperature
does not have a large influence on the qualitative behavior of the aggregate; it will mainly
influence the value (and accuracy) of the measured critical shear rate.

6.3.2 Results and Discussion
As mentioned in the introduction we are interested in the structural changes and break-up
mechanisms of aggregates subjected to a simple shear flow. Four different systems were
considered while the shear rate was varied between 0.1 and 2.5 s−1. The obtained results
will be presented in the following order: First, we will consider the general aggregate
behavior and the differences between the four systems will be discussed. Next, a detailed
view will be taken at the occurring break-up mechanisms. At last the model for erosion
kinetics, as discussed in the theoretical section, will be compared with the experimental
results.
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General aggregate behavior
In Figure 6.5 representative images of the aggregate behavior are shown at different shear
rates for the four investigated systems. As one can see for all systems in the initial stage
the particles form compact, dense aggregates. With increasing shear rate the aggregates
become more circular, stay dense or become denser and the crystalline ordering increases.
At a certain shear rate, which corresponds to the critical shear rate, the aggregate size
is reduced significantly. The last image in panel a (large particles system) shows clearly
breaking by fragmentation, while in panel d (smaller particles) the result of the erosion
process is clearly visible.
Below we will consider separately the changes that the shear flow induces in aggregate

size, shape and structure, one by one.
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Figure 6.5: Images of the four investigated system at different shear rates: a) WA115, b)
WO115, c) WA65 and d) WO65. The flow is along x-direction. The white bar corresponds
to 1 mm.

Size The size of the aggregate is given by the number of particles. Representative
experiments on the evolution of the aggregate size as a function of the shear rate are
shown in Figure 6.6. As one can observe the size stays more or less constant until the
critical shear rate is reached. In the next figure (Figure 6.7) the critical shear rate for
all experiments has been summarized. Because of the spread in the experimental data
it is difficult to say how the critical shear rate exactly depends on the aggregate size.
However, it seems that the dependence is very weak. Because the data spread it is also
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difficult to distinguish between the models for break-up by fragmentation and break-up
by erosion. The lines in the figure represent the calculations of the critical shear rate
in case of erosion according to Eq.(6.7). For the fitting parameter fd the optimum was
found at fd = 0.19 for the Wx115 and fd = 0.11 for the Wx65 system, which is lower
than expected (for half immersed spheres at w/a interface one can expect fd = 0.5). As
was discussed in [31] and chapter 5, a smaller fd value corresponds to a higher critical
shear rate, which in the case we consider (a single particle at the rim) can be explained by
the hydrodynamic coupling between the particle and its neighbors and internal particles
rearrangements. The difference in the received fd values between the large and small
particle systems will be discussed later in the present section.
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Figure 6.6: The evolution of the number of particles as a function of the shear rate for
the four experimental systems: a) WA115, b) WO115, c) WA65 and d) WO65.
The critical shear rate is similar for aggregates at w/a and w/o interface. It can be

explained by looking at the capillary forces, which are quite similar in both cases. Since
the measured contact angles of the particles in both systems are very similar (see Table
6.1) the magnitude of the capillary force is also similar. For distance r = 2Rp it was
calculated that F (WA115)cap = −174 pN , F (WO115)cap = −248 pN and F (WA65)cap = −8 pN ,
F (WO65)cap = −13 pN . In addition, for both systems the particles were for the largest part
submerged into the water phase (Figure 6.4), hence it can be expected that covering them
with oil will not change a lot of their properties.

Shape In Figure 6.8 it is shown that the aspect ratio decreases (i.e. circularity increases)
with increasing shear rate for all systems. Such increase of the circularity is characteristic
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Figure 6.7: Critical shear rate versus number of particles for the different systems. With
solid circles are the results for WA115, with open circles-WO115, with solid squares-
WA65 and with open squares- WO65. The lines are fits according to the model in section
6.2.3 with fd = 0.19 for Wx115 and fd = 0.11 for Wx65 system.

for simple shear flow; it has not been observed in other types of flow such as extensional
flow. We attribute this to the rotation of the aggregates. If the aggregates adjust them-
selves too slowly to the continuously changing (rotating) deformational component of
flow, circular symmetry is promoted. When the shear rate approaches the critical shear
rate, there is a tendency towards larger aspect ratio’s, as the onset to break-up.

Structure The structure of an aggregate is directly related to the strength of the ag-
gregate. Its development will be characterized by the changes in the coordination number
Co, and in the Fourier transforms of the images. It was also observed that an amorphous
layer in the aggregate was formed. In Figure 6.9 Co is presented as a function of the
applied shear rate. There is a pronounced difference in the initial state between the sys-
tems with small and with large particles. In the initial state Co is significantly larger for
the WX65 systems than for the WX115 systems. With the applied flow the coordination
number for WX65 systems is constant within the measurement accuracy (Figure 6.9c) or
even decreases (Figure 6.9d) while for WX115 it increases (Figure 6.9a and b).
Similar differences in the coordination number as a function of the applied shear

rate were received by Hoekstra and coworkers [17] for 2D suspensions. They observed
for a system with a stronger attraction potential (a surfactant free system) an increase
of the coordination number with increasing shear rate while a system with a weaker
attraction potential (with surfactant) showed the opposite behavior i.e. a decrease of the
coordination number with increasing shear rate. The two systems have a different bonding
strength between the particles, in the first one the bonds are rigid and the particles can
not slide easy over each other, while in the second system the bonds are weaker and the
particles can slide over each other.
The results for L/B and Co show that the initial effect of the shear rate is to order and

increase the circularity of the aggregates. It was also noticed that for many experiments
a small decrease not only of the circularity but also of the coordination number was
observed just before breaking (Figure 6.8 and Figure 6.9). This is again an indication that
the aggregate structure starts to break down under the applied shear flow. Because the
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Figure 6.8: Typical aspect ratio L/B at different shear rates for the four different systems:
a) WA115, b) WO115, c) WA65 and d) WO65. In the legends of the graphs are shown
the initial number of particles for the particular aggregate. The measured values are given
by the symbols, the lines are guide to the eye.

WO65 system shows this decrease from the beginning it means that the flow destabilizes
the aggregate at all shear rates.
The Co results indicate that all aggregates already had, or developed a crystalline

structure. The large aggregate systems preferably develop a single crystal structure (with
3 exceptions), identified by the points in the 2D Fourier transform (Figure 6.10). The
Fourier images of the small particle systems (1 exception) showed the development of
circular bands instead of points with increasing shear rate (Figure 6.11). The combination
of a high coordination number with a band structure in the Fourier images points towards
the existence of multiple crystal domains with different orientations in the small particle
system. The exceptions observed we explain with a difference in the initial aggregate
structure due to the statistical nature of the aggregation.
In Chapter 5 [31] we argued that the WA115 aggregates behave as solid disc-like

bodies. Compared to the motion of the aggregate as a whole, there occurs hardly any
restructuring and movement of separate particles inside the aggregate. This behavior is
observed for the WO115 system, too, while WX65 aggregates become softer, i.e. more
amorphous, with increasing shear rate. In the initial stages of the experiment and at low
shear rate (<0.2 s−1) the aggregates have a hard crystalline structure. With increasing
shear rate a thin amorphous layer forms around the crystalline core. At even higher
shear rates the thickness of the amorphous layer grows. Just after increasing the shear
rate above the critical shear rate, multiple amorphous layers form and eventually the
outer layers start to erode very slowly. When the aggregate reduces in size, previously
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Figure 6.9: Typical coordination number Co measured for different shear rates for the
four different systems: a) WA115, b) WO115, c) WA65 and d) WO65. In the legends
of the graphs are shown the initial number of particles for the particular aggregate. The
measured values are given by the symbols, the lines are guide to the eye.

crystal layers, on the outside of the crystalline core, also become amorphous. Thus the
amorphous boundary is moving inward. The aggregate radius continues reducing until
an equilibrium radius is reached. In this situation there is only a single amorphous outer
layer surrounding a multiple domain crystal, circular shaped core.
The formation of these multiple amorphous layers has been illustrated in Figure 6.12

for a WA65 aggregate. The ellipses approximately indicate the boundary between the core
and the outer layers. The insets in the figure are the same images in black and the white
for better visualization of the more open amorphous layer. It can be seen clearly that the
core has a crystalline structure and that the outer layers are amorphous. It cannot be seen
on these pictures, but the particles in the amorphous layer are continuously rearranging.
The aggregates with large particles, which are supposed to behave as solid body,

develop a much more narrow and slower amorphous layer (see Figure 6.13), than the
small particles systems.

Summary The main differences between the systems are summarized in Table 6.2.
As one can see the aggregate behavior for the water-air and water-oil interfaces is

similar but there are significant differences in behavior between the large (115 µm) and
small (65 µm) particle systems. The most important difference is the critical shear rate.
The experiments show that the critical shear rate for the small particles systems is about
two times smaller that the critical shear rate for the large particle systems, while according
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a) b) c)a) b) c)

Figure 6.10: Evolution of FFT for WO115 system with Nin=285 at: a) initial state, b)
shear rate 1 s−1 and c) 1.4 s−1.

a) b) c)a) b) c)

Figure 6.11: Evolution of FFT for WO65 system with N in = 413 at: a) initial state, b)
shear rate 0.3 s−1 and c) 0.5 s−1.

to the theory developed in section 6.2.3 it is expected to be 4 times smaller. The theory
considers only capillary and hydrodynamic forces and the difference with the experiments
shows that other factors play role too. The difference is explained by assuming different
value of the fitting coefficient fd. As shown in Figure 6.7 fd = 0.19 for the big particles
system and fd = 0.11 for small particles system describes well the experimental data. The
value of fd can be linked to the difference in the properties of the experimental systems,
such as different roughness and mobility of the particles or different degree of shielding
from the neighboring particles. The smaller value of fd for the WA65 systems indicates
either that the roughness of the particles is less, or that their increased mobility reduces
the ”grip” of the flow on the particles.
We believe that the friction force is a very important factor. The smaller friction

forces in the Wx65 system allows the aggregate to restructure more easily and hence it
adjusts faster to the continuously changing deformational field. This will effectively lead
to a higher critical shear rate than expected.
The presence of smaller friction forces in the Wx65 systems could also explain the

difference in the Co of the initial configuration. Smaller friction forces in the Wx65 system
allow the particles to slide over each other easier than in the Wx115 system, which results
in an energetically more favorable, i.e. denser, initial aggregate configuration.
The formation of an amorphous layer around a crystalline core can be explained also by

considering friction forces. A friction force between two adjacent surfaces is proportional
to the normal force acting on these surfaces. Inside an aggregate the normal forces are
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a) b) c)a) b) c)

Figure 6.12: Formation of amorphous layers with increasing shear rate for WA65 at shear
rates: a) 0.6 1/s, b) 0.7 1/s and c) 0.8 1/s. The initial number of particles was Nin=305.
The insets show black and white transformation of the original images. The amorphous
layers are outside of the drawn ellipses.

b)a) b)a)

Figure 6.13: Formation of amorphous layers with increasing shear rate for WA115 at
shear rates: a) 1.5 1/s and b) 1.8 1/s. The initial number of particles was Nin=285. The
insets show black and white transformation of the original images. The amorphous layer
are outside of the drawn ellipses.

the largest in the central region of the aggregate and the resulting friction forces will
prevent the particles from sliding over each other. The friction forces on the outside of
the aggregate are not that large and hence the particles on the outside can slide and
move around, resulting in an amorphous outer layer. Due to the size of the particles the
normal forces and so these friction forces are smaller for the Wx65 systems and a much
thicker amorphous layer will develop, just as observed in the experiments. In a transient
situation (i.e. not an equilibrium state), just after a change in shear rate, particles on the
outside start eroding away, the aggregate becomes smaller and both the normal forces
and the friction forces inside the aggregate become smaller too. As a consequence with
reducing aggregate size the thickness of the amorphous layer is more or less preserved. In
addition, difference in the surface roughness of the particles of both system will lead to
difference in the friction force.
Break-up mechanisms
First it has to be noticed that due to their motion in the Couette apparatus, the aggre-
gates are not permanent in the field of view of the camera. Hence, it is difficult to observe
the aggregate break-up directly. For example, if an aggregate returns into the field of
view in several pieces it is not obvious whether it fragmented, or eroded and afterwards
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System ·γcr, s−1 Init. Co Am. layer Structure

WA115 1.9±0.1 5.4±0.6 Small Mostly single domain
crystalline, hard

WO115 1.9±0.3 5.2±0.4 Small Single domain crystalline
or with defects, hard

WA65 0.8±0.1 5.7±0.1 Increasing Multi domain crystalline,
with ·γ hard (≤ 0.6 s-1)

and soft (> 0.6 s-1)

WO65 0.6±0.1 5.8±0.2 Increasing Multi domain crystalline,
with ·γ hard (≤ 0.3 s-1)

and soft (> 0.3 s-1)

Table 6.2: Summary of the differences between the experimental systems. Am layer stands
for amorphous layer.

re-aggregated during the time that it was not visible. The mechanism of break-up was
determined from the direct observations in front of the camera and from indirect indi-
cations such as the size of the aggregate as a function of time or the presence of single
particles in the system. We observed both erosion and fragmentation in the experiments.
Below we consider the two mechanisms separately.

Break-up by erosion Erosion was observed in all four experimental systems. In Figure
6.14, and in Figure 6.5c) and d), one can see single particles eroding. Unfortunately, such
a direct observation was not possible for all experiments; therefore these observations
alone are not decisive to consider erosion as the only break-up mechanism.
If one considers the size distribution of the aggregates after break-up, the erosion

seems more pronounced for the small particles systems (see the images in Figure 6.5). For
the small particle systems, there are a lot of single particles present as can be observed
from Figure 6.5d). When the size distribution after break-up contains mainly single
particles, this is a strong indication of erosion. However the eroded particles can form new
aggregates again, hence the presence of small aggregates after break-up is not inconsistent
with erosion, too.
The third argument for erosion is given by the time dependence of the effective ag-

gregate radius. Erosion will show a continuous decrease in time, while fracture is a
discontinuous, step wise reduction in aggregate size. Figure 6.15 presents the number of
particles in the aggregate as a function of time for three of the investigated systems As one
can see the change in the number of particles is gradually decreasing, indicating break-up
by erosion. However, due to lack of sufficient data points, because data points can only
be taken when the aggregate is in the field of view, we can not absolutely discriminate
between erosion or fragmentation. For example, the curve with open triangles in Figure
6.15d) could be due to both erosion and fragmentation.
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a) b)

d)c)

a) b)

d)c)

Figure 6.14: Direct observation of erosion for systems: a) WA115, at shear rate 1.9,
experiment with N in = 291, b) WO115, at shear rate 2.1, N in = 222 c) WO65 at shear
rate 0.7 s−1, N in = 305 and d) WA65 at shear rate 0.8 s−1, N in = 556.

As seen in Figure 6.15 erosion of the aggregates occurs at several shear rates. At
every shear rate a steady state is reached. This is explained by the critical shear rate
dependence on the aggregate size. However, the calculations for the critical shear rate
show only a weak dependence on the aggregate size (Figure 6.3).
Break-up by fragmentation Figure 6.16 shows consecutive images of the break-up
process. On the video recordings it can be seen that the separate fragments of the aggre-
gate move independently from the main aggregate. In the static pictures this temporal
information has been lost and the separate pieces appear to be still attached, but they are
not. The last frames show the daughter aggregates when break-up has been completed.
Break-up in fragments in front of the camera was not observed for the small particle
systems.
The fragmentation occurs at the periphery of the aggregate, as one can see in Figure

6.16 and the aggregate breaks in more than two parts. It was also noticed that the
fragmentation starts with a single rupture. Rupture of the first fragment triggers more
rupturing processes. This cascade of fragmentation can be explained from the fact that
the aggregate loses it circular shape and thus becomes weaker once the first part has been
broken.
The critical shear rate for the two cases in Figure 6.16 is quite different, i.e. 2.2 s−1

for the first and 1.3 s−1 for the second case. Partially this is due to the statistical nature
of the break-up process. But it is also due to the aggregate size dependence of the critical
shear rate. For instance large aggregates can contain more defects that will promote the
fragmentation. For the aggregates shown in the Figure 6.16 the break-up occurred about
1-2 minutes after applying the shear rate. Which is much faster than the processes in
Figure 6.15.
In summary, break-up by both erosion and fragmentation has been observed. Single

and multiple particle erosion is the prevailing process. As it was shown in Figure 6.3,
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Figure 6.15: Number of particles as a funtion of time for three of the experimental systems:
a) and b) WA115, c) WO115 and d) WA65. With symbols are given the experimental
points and with line the fitting according to the model. The shear rates are shown on the
graphs.

the critical shear rates for fragmentation and erosion are similar, thus it is expected that
the aggregates can break by both mechanisms. We have indications that fragmentation
is promoted by the presence of defects in the crystal structure. The analysis of the video
images clearly showed that aggregates with a perfect hexagonal structure will break by
erosion due to the stronger bonding between the particles in the inner regions of the
aggregate [11]. Due to the high normal forces and large friction forces, restructuring
in the Wx115 systems is more difficult than in the Wx65 systems. The small particle
aggregates restructure easier with the applied flow, which explains why these systems
break only by erosion.

Comparison with the kinetic model for erosion
In this section the kinetic model for erosion, developed in section 6.2.4, is evaluated by
comparing it with the experimental data, i.e. the number of particles in an aggregate as
a function of time after the shear rate in the Couette cell has been increased. Because the
aggregates move in and out the field of view, it is difficult and time consuming to collect
this data. Hence only a few experiments have been processed in this way. To be able to
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a)

b)

a)a)

b)b)

Figure 6.16: Breaking in the field of view for WO115 system. Case a) corresponds to N in=164 at shear 2.2 s−1 and case b) to N in = 449 at shear 1.3 s−1. The first frames show
the aggregate before to be broken while the last frames show the broken aggregate the next
time it passes in front of the field of view.

compare the model with the experimental results we rewrite Eq.(6.11) as:
N(t) = (a+ b ∗ exp(−ct))k (6.12)

where the constants are defined as follows :
a = (N∞)1/k
b = (N0)1/k − (N∞)1/k

c = 2Aγ
k = 6√3c1πµfdR2pγ

k
The only unknown is the proportionality constant c1, which is part of the constants A
and c. The numbers N0 and N∞, received from the constants a and b, can be compared
with the experimental values. The optimum k-value has been found by fitting Eq. 6.10
to the critical shear rate as a function of the number of particles, as given in Figure 6.3.
For the particles with a radius of 115µm the optimum k-value is 7 and for the particles
with a radius of 65µm the optimum k-value is 34. The constants a, b and c were used as
fitting parameters, for k the values given above were used.
In Figure 6.15 the experimentally obtained time dependence of the aggregate size

has been given for the WA115, WO115 and WA65 systems, together with the model fit.
The kinetic model for erosion describes the experimental data reasonably well. All the
resulting values for the fitting parameters are presented in Table 6.3. In the table R2
is the statistical coefficient of determination which shows how closely the fitted values
correspond to the actual data.
From the table we observe that the fitted values for N0 and N∞ are in good agreement

with the experimental values. However, the values for A scatter quite a lot for the different
shear rates which is in disagreement with the model. The model implies that the A-value
should be the same for each experiment within the same experimental system. Thus the
model can not be completely validated both due to the scattering in the fitting parameter



114 Chapter 6

System γ̇cr, s−1 k A R2 N0,fit N0,exp N∞,fit N∞,exp

a) 1.8 0.107 0.99 193 194 170 175
WA115 1.9 7 0.304 0.98 184 181 110 115

2.0 0.100 0.95 118 115 10 17
b) 1.8 0.057 0.80 189 178 89 92

WA115 1.9 7 0.105 0.92 95 92 8 26
c) 1.8 0.006 0.73 229 229 78 224

WO115 1.0 7 0.026 0.95 224 224 4 29
d) 0.7 0.237 0.88 297 297 156 270
WA65 0.8 34 0.419 0.88 284 270 17 132

0.9 4.719 0.99 132 132 18 23
Table 6.3: Summary of the fitting constants for Figure 6.15

A and the insufficient number of experimental data. A possible explanation for the
spread in A-values could be that the real break-up mechanism consists of a mixture of
fragmentation and erosion instead of just pure erosion. Erosion could be dominant in the
measurement sets that fit the model reasonably well (Figure 6.15a and d).

6.4 Conclusions
Both break-up by erosion and fragmentation have been observed. Erosion was observed in
all investigated systems while fragmentation was seen only for the large particle systems.
According to the calculations the critical shear rates for erosion and fragmentation are
similar, thus both mechanisms can occur simultaneously. We have shown examples where
break-up in fragments was initiated by the presence of defects in the aggregate structure.
No differences in the behavior have been observed between the water-air and water-oil

systems, but the differences between the large and small particle systems were significant.
They differ in the critical shear rate, coordination number and orientational ordering as
shown by the Fourier images.
These differences can be understood by noting that the normal forces in the center of

the aggregate are larger than near its rim. These normal forces and so (as we assume) the
resulting friction forces are larger for the larger particle systems. Hence restructuring in
the central part of the large particle aggregates is hardly possible and fracturing initiated
by crack growth is in favor. In the small particle aggregates this restructuring is feasible
and so crack growth is unlikely while erosion far inside the aggregate is possible. However,
analytical modeling of these friction forces is very difficult and we propose for future work
to use numerical simulation techniques to model our experimental system in order to get
more insight in the influence of friction forces on the aggregate behavior in a shear flow
and possibly to support our conclusions here.
The critical shear rate for break-up by fracturing or erosion could be described by our

model calculations, assuming a quite low value for fd. This low fd value can be explained
by the hydrodynamic interaction with neighboring particles which at contact lowers the
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net drag force on the particle. Also the time evolution of the aggregate sizes after a step
increase in shear rate, was reasonably well described by our model calculations. However
an insufficient number of experimental data is available to fully confirm or invalidate the
erosion kinetics model.
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Chapter 7

Overview and perspectives
This manuscript describes the work done to investigate the influence of hydrodynamic
flow on the properties of 2D aggregates. We choose to work with a 2D system because
it is more convenient for optical observation, there is no gravitational settling and the
theoretical modeling is simpler. We believe the 2D systems are a good model system and
starting point for the investigation of the more complicated 3D aggregates.
Our method is direct and nondestructive. We observe with video microcopy single

aggregates, which gives us a detailed look into the processes of breaking. In addition, the
reverse process of aggregation after collision with another aggregate is suppressed, which
simplifies the modeling additionally.
However the method has certain drawbacks too. First, like every method looking at

single particle level, it is difficult to get enough results for statistically significant data.
Second, it was not possible to keep the aggregates in the field of view and thus the exact
moment of aggregate breaking is lost.
To be able to collect statistically reliable data we work with aggregates consisting of

big non-colloidal particles which will give a similar initial structure. Using big particles
results in a well defined attraction force. For that purpose also the interface shape was
measured and controlled. In our experiments the capillary force is the main force and
all the other forces are negligible. There is an easy and accurate way to calculate the
capillary force by measuring the contact angle of the particles. The multiple particles
interactions are also well defined as shown in the thesis.
In our experiments we observe a single aggregates for long time at different shear rates.

Four different experimental systems were used. The type of liquid interface and the size
of the primary particles were varied. We consider floc structure, shape and size.
Floc structure is directly related to the floc strength which is defined by the number of

bonds between the individual particles. Thus one of the most important property of the
aggregates is their porosity. It was found that the flocs generally get more compact with
the applied shear rate. Before the breaking to occur the aggregates become less dense
which can be used for prediction of the onset of breaking.
With increasing shear rate the aggregates adopt a more circular shape. The circular

shape is something specific to the simple shear flow and was not observed elsewhere. The
aggregates try to shape themselves through restructuring along the flow pattern. The
rotational component of the simple shear flow rotates the aggregate faster that the shape
can adjust through restructuring. Due to the symmetry considerations in that case a
circular shape is preferred.
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The aggregate behavior at water/air and water/oil interface is similar. Also the critical
shear rate is the same for aggregate consisting of the same size primary particles. However,
there are significant differences in the aggregate restructuring and critical shear rate
depending on the size of the primary particles.
Special attention was paid to the breaking mechanism. Both erosion and fragmenta-

tion of the aggregates was observed. The erosion is the prevailing process, especially for
the small particles. Direct observation of the breaking process is difficult due to the ag-
gregate not being constantly in the field of view. It was found that the critical shear rate
depends weakly on the aggregate size. A simple theoretical model has been developed for
comparison with the experimental critical shear rate.
The main advantage of the model is its simplicity. It is applicable to dense aggregates

that behave as solid body (the particles are held together by strong capillary and friction
forces). Although the particles move together as one solid body every particle is assumed
to feel the hydrodynamic force as if it is alone (which is more true for 2D than 3D because
the particles can feel the flow from below the interface). The aggregate was modeled as
circular shaped with hexagonally packed particles, as was experimentally observed.
We investigated breaking in normal direction along the extensional axis of the flow.

Two cases are considered: rupture exactly in the middle on two equal pieces and erosion
of a single particle from the periphery. In principle other dividing planes such as breaking
of a single particle from the surface of the aggregate can be also considered.
The attractive interactions inside the aggregate were assumed to be pair wise addi-

tive. We proved that even at short distances the capillary interactions is just pair wise
additive. It is difficult to evaluate the exact hydrodynamic force acting on every particle
in the aggregate. Hence the total hydrodynamic force was assumed to be sum of the hy-
drodynamic force acting on each particle. Such way of treating the hydrodynamic force
for sure overestimates it because the shielding from the neighboring particles is not taken
into account. This is compensated by using an average friction coefficient for the whole
aggregate as fitting parameter.
According to the calculations there is no significant difference in the critical shear

rate for breaking in the middle and erosion. Thus both processes can occur in the same
time. Moreover, the calculated critical shear rate both for erosion and rupture shows
weak dependence of the aggregate size which correlates well with the experiments.
The model was developed further to consider erosion kinetics and was compared with

the experientially obtained time dependence of the aggregate size. We found that the
model fits the experimental data sometimes well and sometimes not. One possible ex-
planation could be that the real breaking mechanism consists of a mixture of breaking
and erosion instead of just pure erosion. Insufficient experimental data is available to
completely confirm or invalidate the erosion kinetics model.
In the future it will be interesting to extend the experiments to aggregates with a

more open (fractal) structure. The preliminary results showed that aggregates consisting
of PMMA particles have fractal structure. It was found that they break at lower shear
rates in comparison with the glass particles. One of the problems that one has to expect
with more open aggregate structure is worse reproducibility due to the larger variety of
internal configurations.
Clearly the transient behavior of the aggregates is very complicated and it is difficult

to model analytically. An interesting approach would be to adjust the discrete element
method (DEM ) developed by Cundal and Higashitani to our experimental system. The
ability of this method to visualize transient behavior and to intuitively change and define
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all the relevant forces makes it a very strong tool to understand aggregate behavior in
shear flows. Especially it would be interesting to model the influence of the friction
forces on the transient behavior, which would be a way to test our interpretation of the
experimental behavior.
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Summary
In many disperse systems of practical importance (e.g. paints, dairy products), one ob-
serves, under certain circumstances, aggregation of the suspended particles. Aggregation
phenomena are also an important issue in many solid-liquid separation processes as min-
eral processing or waste water treatment, where one has to deal with both colloidal and
non-colloidal particles. In another application field colloidal or non-colloidal particles (or-
ganized in 2D structures) are used as stabilizing agents of foams and emulsions (known
as Pickering emulsions) encountered in many industrial and natural processes such as
food, cosmetic and pharmaceutical products. To improve the properties of these products
or the efficiency of these processes one needs a detailed knowledge of the behavior and
properties of the aggregates involved. The behavior of an aggregate in shear flow can be
quite complex. The aggregate may deform, restructure or break-up.
Our goal is to find the relationship between the behavior of an aggregate and the shear

flow to which it is subjected. In this thesis an experimental study of 2D aggregates (as
a model for 3D structures) in shear flow is presented. We are interested in the critical
shear rate at which the aggregate will break-up, but also in the structural changes that the
aggregates undergo due to the applied shear flow. We investigate single aggregates, in this
way only the disintegration of the aggregate is considered and the process of aggregation
is negligible.
In the literature flock break-up has been classified in two general categories. The

first one is the removal of single particles or small aggregates from the parent aggregate
surface (erosion). The second consists of flock break-up into pieces with similar size
(fragmentation). However, direct observations of erosion or fragmentation are scarce.
In the first part of the thesis the experimental setup and its characteristics are de-

scribed. The set-up consists of Couette device with two concentric cylinders rotating in
opposite directions. In the gap between them two liquids are inserted on top of each
other, forming an interface. When small (i.e. submillimeter) particles are added, they are
trapped at the interface due the interfacial tension force. Under the influence of gravity
every particle slightly deforms the interface which causes a capillary interaction force with
neighboring particles. These capillary interactions are strong enough to induce aggrega-
tion of the particles. The resulting aggregate is observed from above with a ccd camera
connected to a video recorder.
The flow properties, to which the aggregates are subjected in our Couette device, are

described in chapter 2. The initial idea was to keep the aggregate in the stagnant zone of
the flow field and so in the field of view of the camera, by continuous adjustment of the
cylinder speeds, using a feedback loop. However, calculation of the transient flow profile
after speed adjustment showed that the characteristic time for reaching the steady-state
profile is about 45 s in a typical case. Due to this long response time we are not able to
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keep the aggregate under investigation in the field of view. Hence, we allow for a slow
rotation of the aggregate. The camera is kept stationary and the aggregate is observed
during the time it passes the field of view.
To prevent capillary interactions of the particles with their environment due to the

interface curvature, the liquid-liquid interface, without particles, should be completely
flat. To this end we modified the Couette device in order to be able to control the
interface shape. The lower sides of both cylinder surfaces have been constructed of a
hydrophilic material while the upper sides are hydrophobic. The interface can be pinned
to the transition between these two surfaces. By optimizing the amount of lower liquid,
while the interface is pinned, and checking the interface slope using a laser beam refraction
technique, a flat interface is achieved.
Chapter 3 and 4 of the thesis deal with the capillary interaction between the particles

without any shear field applied. We report both new experimental results and a analytical
method to calculate many particle capillary interactions. Chapter 3 describes a single
particle trapped at an otherwise flat interface and the capillary interactions between two
particles trapped at an interface. The method is developed further in chapter 4 to include
capillary interactions between multiple particles. For a single particle at the interface it
is shown that the vertical position of the particle relative to the interface is completely
determined by the three-phase contact angle. Also the interfacial deformation due to the
particle can be calculated given this contact angle. On the two particle level, knowing the
deformation of a.single particle the interaction force between two particles can be found.
At not too close distances between the particles the linear superposition approximation
(LSA) can be used in which the deformation due to these particles is just the sum of the
single particle interface profiles. At close distances the correct boundary conditions at the
particle surface will be violated (the contact line on the particle surface is not circular)
and the LSA will give erroneous results. In order to be able to calculate the correct force,
first the exact boundary conditions are derived. Three cases are considered: a meniscus
meeting a flat wall, a cylinder surface and a sphere. After that, an analytical procedure is
developed to solve the linearized Young-Laplace equation that describes the interface and
calculate the forces for an arbitrary number of particles. The full solution is expressed in a
series of Bessel functions with coefficients determined by the contact angles at the particle
surfaces. The lowest order term of the full solution is the LSA solution. The background
curvature of the interface (for instance due to the container) can be also introduced as
additional term in the solution. It turned out that for submillimeter particles which can
adjust themselves to the interface the LSA is sufficient to describe the interaction, even
at contact.
The capillary force calculations were checked experimentally. We used video mi-

croscopy to monitor the motion of individual particles and pairs of interacting particles
at a liquid-liquid interface with a slight background curvature. By analyzing the video
images the particle velocities have been determined. Since the capillary force should
balance the viscous drag force, one is able to calculate the force on a particle from its
velocity. The measured velocities (and thus the capillary forces) are in good agreement
with the LSA predictions, while a physical realistic value was obtained for the only fitting
parameter used in the calculations.
The resting part of the thesis deals with single 2D aggregates in shear flow. In chapter

5 we consider restructuring of aggregates of different sizes as a function of the applied
shear rate and time, using different characteristics of the aggregate such as aspect ratio,
coordination number, pair correlation function, orientational correlation function and
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Fourier images of the aggregate structure. It was found that the aggregates adopt a more
circular shape, and the particles order in a more dense, hexagonal structure at higher shear
rates. We attribute this to the rotation of the aggregates in the shear field. However, just
before break-up a small decrease of the order was observed which is an indication that
the aggregate structure starts to disintegrate under the applied shear flow.
Moreover, we have investigated the critical shear rate for fragmentation of a single

aggregate in simple shear flow. There appeared to be a narrow band of shear rates at which
aggregates will break-up independent of their size: γ̇crit = 1.8±0.2 s−1 for 20 < N < 400
(with N the number of particles inside the aggregate). A simple theoretical model has
been developed to explain the experimentally observed critical shear rate for break-up.
In this model the aggregate is considered as solid circular disk that will fragment in two
more or less equal parts. The capillary and drag forces on these parts of the aggregate
were calculated and by balancing these forces an expression for the critical shear rate was
obtained. In chapter 6 the model for aggregate break-up was extended to erosion of single
particles. The model shows a weak dependence of the critical shear rate on the aggregate
size (similar to the critical shear rate behavior for fragmentation) which is consistent with
the experimental observations. Also the kinetics of the erosion process was modeled and
compared with the experimentally obtained time dependence of the aggregate size.
The experimental part of the study was extended to two different particle sizes, and

aggregates trapped in a water-air interface and a water-oil interface were investigated.
Special attention was paid to the characteristics of the break-up process. Both erosion
and fragmentation were observed, but erosion was the dominant process, specially for
the smaller particles. The aggregate behavior at the water-air and water-oil interfaces is
quite similar. Also the critical shear rate is the same. We observed, however, significant
differences in the critical shear rate and aggregate restructuring for different particle sizes.
The results show that the friction coefficient fd is different for aggregates consisting of
large particles and small particle aggregates. Clearly other factors than capillary and
drag force play a role, too. Probably, friction forces between contacting particles are
an important factor as well as the details of the hydrodynamic interactions between the
particles. These items can be addressed in future research in more detail, for instance by
numerical simulations.
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Samenvatting
In verscheidene gedispergeerde systemen welke van praktisch nut zijn, zoals verf of zuivel
producten, kan men onder bepaalde omstandigheden vlokking ofwel aggregatie van de
aanwezige deeltjes waarnemen. Aggregatie verschijnselen zijn ook belangrijk in scheidings-
processen waarbij men de vaste stofdeeltjes uit een vloeistof wil verwijderen. Voorbeelden
zijn het winnen van mineralen en afvalwaterreiniging. Hierbij heeft men met colloïdale
en niet-colloïdale deeltjes te maken. Kleine deeltjes worden ook toegepast in schuimen en
emulsies, waarbij de deeltjes als stabilisatoren gebruikt worden omdat ze op het grensvlak
van de beide fasen gaan zitten. Zulke emulsies noemt men Pickering emulsies. Ze wor-
den veel gebruikt in producten als levensmiddelen, cosmetica en farmaceutica. Om het
rendement van deze processen of de eigenschappen van deze producten te optimaliseren,
is het van belang om het gedrag en de eigenschappen van deze aggregaten in detail te
kennen. Het gedrag van een aggregaat in een afschuifstroming kan vrij ingewikkeld zijn.
Zo’n aggregaat kan vervormen, andere structuren aannemen, en zelfs opbreken in kleinere
aggregaten, afhankelijk van de sterkte van de stroming.
In dit promotieonderzoek is het de bedoeling om de relatie in kaart te brengen tussen

het gedrag van een aggregaat en de stroming waarin deze zich bevindt. In dit proefschrift
wordt een experimentele studie beschreven van 2D aggregaten (welke als model voor 3D
structuren dienen) in een afschuifstroming. Centrale aandachtspunten zijn de kritische
afschuifsnelheid waarbij een aggregaat opbreekt, afhankelijk van zijn grootte, maar ook
de structuurverandering die een aggregaat ondergaat ten gevolge van de afschuifstroming.
We bestuderen per experiment een individueel aggregaat, zodat we ons kunnen concentr-
eren op het opbreekgedrag van het aggregaat zonder rekening te hoeven houden met het
mogelijk samengaan van twee (of meer) aggregaten.
In de literatuur worden twee categorieën van opbreken beschreven. De eerste is het

opbreken ten gevolge van het afsplitsen van kleine brokjes of losse deeltjes aan de rand
van het aggregaat (erosie genoemd). De tweede is het opbreken van het aggregaat in een
paar stukken welke alle ongeveer even groot zijn (fragmentatie genoemd). Er zijn echter
maar weinig directe waarnemingen van zowel erosie als fragmentatie beschreven.
In het eerste deel van het proefschrift worden de experimentele opstelling en haar

karakteristieken beschreven. In deze studie gebruiken we een Couette apparaat welke uit
twee verticale concentrische cilinderwanden bestaat die tegen elkaar in kunnen roteren.
Tussen deze twee wanden worden twee vloeistoffen aangebracht. Omdat deze een ver-
schillende dichtheid hebben, ontstaat er een nagenoeg horizontaal grensvlak tussen beide
vloeistoffen. Wanneer kleine deeltjes (met submillimeter afmetingen) toegevoegd worden,
zullen deze, ten gevolge van capillaire effecten, in het grensvlak ingevangen worden. Door
de zwaartekracht zal ieder deeltje het grensvlak een beetje vervormen. Hierdoor ontstaat
een zwakke interactie met naburige deeltjes in het grensvlak, de zogenaamde capillaire
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wisselwerking. Ofschoon zwak (in ons geval typisch 50 pN), is ze sterk genoeg om aggre-
gatie van de deeltjes te bewerkstelligen. Het resulterende 2D aggregaat wordt van bovenaf
met een ccd camera in beeld gebracht. Deze camera is met een videorecorder verbonden,
zodat de evolutie van het aggregaat voor verdere analyse op band vastgelegd kan worden.
De stroming waaraan de aggregaten in het Couette apparaat blootgesteld worden,

wordt in hoofdstuk 2 in detail beschreven. Aanvankelijk was het de bedoeling om de
afschuifstroming zo in te stellen dat het aggregaat permanent in het beeldvlak van de
ccd camera zou blijven. In principe kan dit door de rotatiesnelheid van beide cilinders
voortdurend zodanig aan te passen dat het centrum van het aggregaat stilstaat. Dit
gebeurt door middel van terugkoppeling. De reactietijd van het stromingsprofiel, op een
aanpassing van de draaisnelheid van een van de cilinders, moet dan wel voldoende kort
zijn. Uit berekeningen aan het inschakelen van het stromingsprofiel bleek echter dat de
reactietijd typisch 45 s bedraagt en dat is veel te traag om terugkoppeling toe te passen.
Daarom laten we het aggregaat zo langzaam mogelijk met de stroming mee roteren. Nu
worden de veranderingen in het aggregaat alleen waargenomen gedurende de tijd dat het
in het beeldvlak van de ccd camera is.
Om te voorkomen dat er uitwendige capillaire krachten op het aggregaat werken, moet

het grensvlak (zonder deeltjes) perfect vlak zijn. Daarom hebben we het Couette appa-
raat enigszins aangepast. De onderste helft van beide cilinders is gemaakt van hydrofiel
aluminium terwijl de bovenste helft van perspex, een hydrofoob materiaal, gemaakt is. De
contactlijn van het grensvlak met de cilinderwand kan vastgezet worden op de aluminium-
perspex overgang. Het grensvlak kan nu uitgevlakt worden door de hoeveelheid van de
onderste vloeistof aan te passen, terwijl de contactlijn gefixeerd blijft. De vlakheid wordt
gecontroleerd door een laserdiffractie techniek toe te passen.
In hoofdstuk 3 en 4 wordt de capillaire wisselwerking tussen de deeltjes in het grensvlak

beschreven, nog zonder afschuifveld. Naast nieuwe experimentele resultaten wordt een
analytische methode beschreven om de veeldeeltjes capillaire wisselwerking uit te rekenen.
In hoofdstuk 3 beschrijven we de vervorming van het grensvlak rond een individueel
deeltje in dat, zonder het deeltje volstrekt vlakke, grensvlak. Ook beschrijven we de
capillaire wisselwerking tussen twee, in een grensvlak gevangen deeltjes. Deze methode
wordt in hoofdstuk 4 verder uitgewerkt voor meerdere deeltjes. Voor een enkel deeltje
in het grensvlak laten we zien dat de verticale positie van het deeltje ten opzichte van
het grensvlak volledig bepaald wordt door de contacthoek tussen de drie fasen. Ook
de vervorming van het grensvlak rond het deeltje kan berekend worden, gegeven deze
contacthoek. Op het twee deeltjes niveau kan de capillaire kracht tussen de deeltjes
berekend worden, als het vervormd grensvlakprofiel rond de deeltjes bekend is.
Wanneer de deeltjes zich niet te dicht bij elkaar bevinden kan de lineaire superposi-

tie benadering (LSB) gebruikt worden. In deze benadering wordt de vervorming van
het grensvlak opgevat als de som van de vervormingen ten gevolge van de afzonderlijke
deeltjes. Als de deeltjes echter dicht bij elkaar komen, zullen de randvoorwaarden aan het
oppervlak van de deeltjes bij deze aanpak onjuist zijn (omdat de driefasecontactlijn nu niet
meer cirkelvormig is) en de LSB zal verkeerde resultaten opleveren. Om de kracht goed te
berekenen, worden eerst de correcte randvoorwaarden op het deeltjesoppervlak berekend.
Hierbij worden drie gevallen onderscheiden: een meniscus aan een vlakke wand, een cilin-
drisch oppervlak en een bolvormig oppervlak. Vervolgens wordt een analytische aanpak
ontwikkeld om de gelinearizeerde Young-Laplace vergelijking op te lossen. De Young-
Laplace vergelijking beschrijft de vorm van het grensvlak. Met de oplossing van deze
vergelijking kunnen de capillaire krachten tussen een willekeurig aantal deeltjes berekend
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worden. De oplossing wordt uitgedrukt in een reeks Bessel functies. De coëfficiënten in
deze reeks worden bepaald door de randvoorwaarden op de deeltjes. De laagste orde term
in deze reeks is de LSB oplossing. De kromming van het grensvlak (zonder deeltjes) kan
ook meegenomen worden als extra term in deze reeks. Het blijkt dat voor bolvormige
submillimeter deeltjes, die zichzelf enigszins aan het grensvlak kunnen aanpassen door te
roteren, de LSB voldoende is om de capillaire kracht te beschrijven, zelfs als de deeltjes
elkaar raken.
De krachtberekeningen zijn experimenteel getoetst. Met behulp van video-microscopie

is de beweging geanalyseerd van individuele deeltjes en deeltjes paren, welke vast zitten in
een vloeistof-vloeistof grensvlak dat licht gekromd is. Uit deze analyse werd de deeltjess-
nelheid als functie van de deeltjesposities verkregen. Omdat de viskeuze wrijvingskracht
op een deeltje (welke evenredig met de zijn snelheid is) gelijk moet zijn aan de capillaire
kracht, kan men uit zijn snelheid de capillaire kracht op het deeltje berekenen. De gemeten
snelheden (en de daaruit berekende capillaire krachten) zijn in goede overeenstemming
met de LSB voorspelling, met een fysisch realistische waarde voor de enige fit parameter
in de berekening.
Het resterend deel van dit proefschrift handelt over 2D aggregaten in een afschuifstro-

ming. In hoofdstuk 5 beschouwen we het herstructureren van aggregaten van verschillende
afmetingen als functie van de opgelegde afschuifsnelheid en de tijd. Hierbij worden ver-
schillende karakteristieke grootheden gebruikt, zoals lengte-breedte verhouding, coördi-
natie getal, paarcorrelatie functie, oriëntatiecorrelatie functie en Fourier getransformeerde
afbeeldingen van de aggregaatstructuur. De aggregaten nemen in een afschuifstroming
een rondere vorm aan bij toenemende afschuifsnelheid, en ook de ordening in zeshoekige
patronen neemt toe. Deze trend wordt echter doorbroken vlak voordat de aggregaten
opbreken. Dan neemt de rondheid en ordening enigszins af. Dit is een aanwijzing dat het
aggregaat uiteen begint te vallen onder de opgelegde afschuifstroming.
Daarnaast hebben we de kritische afschuifsnelheid voor fragmentatie van een aggregaat

in afschuifstroming onderzocht. Alle aggregaten breken op binnen een nauwe band van
afschuifsnelheden, nagenoeg onafhankelijk van hun afmeting: γ̇crit = 1.8 ± 0.2 s−1 voor
20 < N < 400 (waarbij N het aantal deeltjes in het beschouwde aggregaat is). Er is een
eenvoudig theoretisch model geformuleerd om de gemeten kritische afschuifsnelheid voor
opbreken te verklaren. In dit model wordt het aggregaat opgevat als een platte schijf
die in twee min of meer gelijke delen fragmenteert. We hebben een uitdrukking voor de
capillaire en voor weerstands krachten op deze delen afgeleid. Door deze aan elkaar gelijk
te stellen, is een uitdrukking voor de kritische afschuifsnelheid als functie van het aantal
aanwezige deeltjes gevonden.
In hoofdstuk 6 is dit model voor het opbreekgedrag uitgebreid om het opbreken door

erosie te beschrijven. Het model laat zien dat de kritische afschuifsnelheid voor erosie zwak
afhangt van de aggregaat grootte (vergelijkbaar met de kritische afschuifsnelheid voor
fragmentatie). Dit is consistent met de experimentele waarnemingen. Ook de kinetiek van
het erosie proces is gemodelleerd en vergeleken met de waargenomen tijdsafhankelijkheid
van de aggregaatgrootte na een verandering van de afschuifsnelheid.
In het experimenteel deel van dit hoofdstuk werd het onderzoek uitgebreid naar ag-

gregaten bestaande uit deeltjes van 115 µm en aggregaten met 65 µm deeltjes. Deze ag-
gregaten werden onderzocht in een olie/water grensvlak en in een lucht/water grensvak.
Hierbij is speciaal aandacht besteed aan de karakteristieken van het opbreekproces. Zowel
fragmentatie als erosie is waargenomen maar erosie kwam het meest voor, met name in de
systemen met de kleine deeltjes. Het gedrag van aggregaten in een lucht/water grensvlak
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is vergelijkbaar met dat van aggregaten in een olie/water grensvlak. Ook de kritische
afschuifsnelheden zijn nagenoeg gelijk. Er werd echter een significant verschil in herstruc-
tureringsgedrag en kritische afschuifsnelheid waargenomen tussen aggregaten van kleine
en van grote deeltjes. De resultaten laten zien dat de weerstands coëfficiënt fd voor grote-
deeltjes- en kleine-deeltjes-aggregaten sterk verschilt. Kennelijk zijn andere factoren dan
de capillaire en weerstandskrachten van invloed op het opbreekproces. Mogelijkerwijs zijn
de wrijvingskrachten, die tussen elkaar rakende deeltjes op kunnen treden of de details
van de hydrodynamische wisselwerking tussen de deeltjes, van belang. Deze punten kun-
nen in een toekomstige studie nader onderzocht worden, bij voorbeeld met behulp van
numerieke simulaties.
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